Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Tùng
Xem chi tiết
Incursion_03
15 tháng 1 2019 lúc 8:24

Có: \(\frac{2018a+3}{1+b^2}=2018a+3-\frac{b^2\left(2018a+3\right)}{1+b^2}\) (Làm tắt ráng hiểu ^^)

                                \(\ge2018a+3-\frac{b^2\left(2018a+3\right)}{2b}\left(Cauchy\right)\)

                                  \(=2018a+3-\frac{b\left(2018a+3\right)}{2}\)

                                   \(=2018a+3-\frac{2018ab+3b}{2}\)

Tương tự \(\frac{2018b+3}{1+c^2}\ge2018b+3-\frac{2018bc+3b}{2}\)

                \(\frac{2018c+3}{1+a^2}\ge2018c+3-\frac{2018ac+3a}{2}\)

CỘng vế với vế của các bđt trên lại ta được 

\(A\ge2018\left(a+b+c\right)+9-\frac{2018\left(ab+bc+ca\right)+3\left(a+b+c\right)}{2}\)

     \(=2018\left(a+b+c\right)+9-\frac{6054+3\left(a+b+c\right)}{2}\)

       \(=2018\left(a+b+c\right)-\frac{3\left(a+b+c\right)}{2}-3018\)

       \(=\frac{4033\left(a+b+c\right)}{2}-3018\)

Ta có bđt phụ : \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\)(1)

Thật vậy \(\left(1\right)\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)   

                       \(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3ab+3bc+3ca\)

                     \(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

                      \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

                   \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)

Nên (1) được chứng minh

ÁP dụng (1) ta được \(A\ge\frac{4033\left(a+b+c\right)}{2}-3018\ge\frac{4033}{2}\sqrt{3\left(ab+bc+ca\right)}-3018\)

                                                                                                     \(=\frac{4033}{2}\sqrt{3.3}-3018\)

                                                                                                       \(=\frac{6063}{2}\)

Dấu "='' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\ab+bc+ca=3\end{cases}\Leftrightarrow}a=b=c=1\)

Vậy \(A_{min}=\frac{6063}{2}\Leftrightarrow a=b=c=1\)

Conan
Xem chi tiết
shitbo
30 tháng 12 2018 lúc 14:47

Có lẽ là BĐT Cô-si

cứ cho a,b,c>0 thì phải nghĩ ngay đến BĐT cô-si

Đào Trọng Luân
30 tháng 12 2018 lúc 16:47

\(A=\frac{a}{\sqrt{3+a^2}}+\frac{b}{\sqrt{3+b^2}}+\frac{c}{\sqrt{3+c^2}}\)

\(=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+bc+ca+ab}}+\frac{c}{\sqrt{c^2+ca+ab+bc}}\)

\(=\frac{\sqrt{a}\cdot\sqrt{a}}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{\sqrt{b}\cdot\sqrt{b}}{\sqrt{\left(b+c\right)\left(a+b\right)}}+\frac{\sqrt{c}\cdot\sqrt{c}}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(=\frac{\sqrt{a}}{\sqrt{a+b}}\cdot\frac{\sqrt{a}}{\sqrt{c+a}}+\frac{\sqrt{b}}{\sqrt{b+c}}\cdot\frac{\sqrt{b}}{\sqrt{a+b}}+\frac{\sqrt{c}}{\sqrt{c+a}}\cdot\frac{\sqrt{c}}{\sqrt{c+b}}\)

\(\le\frac{\frac{a}{a+b}+\frac{a}{c+a}}{2}+\frac{\frac{b}{b+c}+\frac{b}{a+b}}{2}+\frac{\frac{c}{c+a}+\frac{c}{b+c}}{2}\)

\(=\frac{\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}}{2}=\frac{3}{2}\)

Vậy Max A = 3/2 khi a = b = c = 1. (Max not Min) 

Itachi Uchiha
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2017 lúc 14:45

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

FL.Hermit
9 tháng 8 2020 lúc 9:26

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

Khách vãng lai đã xóa
FL.Hermit
9 tháng 8 2020 lúc 9:45

Đặt: \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)

=>     \(P=\frac{xy}{z^2+3xy}+\frac{yz}{x^2+3yz}+\frac{zx}{y^2+3zx}\)

=>     \(3P=\frac{3xy}{z^2+3xy}+\frac{3yz}{x^2+3yz}+\frac{3zx}{y^2+3zx}=1-\frac{z^2}{z^2+3xy}+1-\frac{x^2}{x^2+3yz}+1-\frac{y^2}{y^2+3zx}\)

Ta sẽ CM: \(3P\le\frac{9}{4}\)<=> Cần CM: \(\frac{x^2}{x^2+3yz}+\frac{y^2}{y^2+3zx}+\frac{z^2}{z^2+3xy}\ge\frac{3}{4}\)

Có:    \(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

Ta sẽ CM: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{3}{4}\)

<=> \(4\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(4\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(x^2+y^2+z^2\ge xy+yz+zx\)

Mà đây lại là 1 BĐT luôn đúng => \(3P\le\frac{9}{4}\)=> \(P\le\frac{3}{4}\)

Vậy P max \(=\frac{3}{4}\)<=> \(a=b=c\)

Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
alibaba nguyễn
11 tháng 12 2016 lúc 16:04

Đầu tiên ta chứng minh bổ đề. 

Ta có

\(6=3.\frac{a^2}{3}+2.\frac{b^2}{2}+c^2\)

\(\ge6.\sqrt[6]{\left(\frac{a^2}{3}\right)^3.\left(\frac{b^2}{2}\right)^2.c^2}=6.\sqrt[6]{\frac{a^6b^4c^2}{3^3.2^2}}\)

\(\Rightarrow a^6b^4c^2\le3^3.2^2\)

Ta lại có:

\(P=3.\frac{a}{3bc}+4.\frac{b}{2ca}+5.\frac{c}{ab}\)

\(\ge12.\sqrt[12]{\left(\frac{a}{3bc}\right)^3.\left(\frac{b}{2ca}\right)^4.\left(\frac{c}{ab}\right)^5}\)

\(=\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{a^6b^4c^2}}\)

\(\ge\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{3^3.2^2}}=2\sqrt{6}\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=\sqrt{3}\\b=\sqrt{2}\\c=1\end{cases}}\)

Khách vãng lai
Xem chi tiết
Phạm Đức Dũng
Xem chi tiết
Nguyễn Ý Nhi
3 tháng 2 2020 lúc 20:58

1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)

\(=ac+bc+c^2+ab\)

\(=a\left(b+c\right)+c\left(b+c\right)\)

\(=\left(b+c\right)\left(a+b\right)\)

CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)

CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}.3\)

\(\Rightarrow P\le\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy /...

Khách vãng lai đã xóa
Phan Gia Huy
3 tháng 2 2020 lúc 21:37

\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)

\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)

Tương tự rồi cộng lại:

\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" xảy ra tại \(a=b=c=1\)

Khách vãng lai đã xóa
Kudo Shinichi
4 tháng 2 2020 lúc 15:00

Bài 1 : 

\(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)

\(P=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\frac{bc}{a\left(a+b+c\right)+bc}}\)

\(+\sqrt{\frac{ca}{b\left(a+b+c\right)+ca}}\)

\(P=\sqrt{\frac{ab}{ac+bc+c^2+ab}}+\sqrt{\frac{bc}{a^2+ab+ac+bc}}\)

\(+\sqrt{\frac{ca}{ab+b^2+bc+ca}}\)

\(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức Cauchy cho 2 bô só thực không âm

\(\Rightarrow\hept{\begin{cases}\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}\\\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\le\frac{\frac{a}{a+b}+\frac{c}{b+c}}{2}\end{cases}}\)

\(\Rightarrow VT\)

\(\le\frac{\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{b}{a+b}+\frac{a}{a+b}\right)}{2}\)

\(\Rightarrow VT\le\frac{\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}}{2}=\frac{3}{2}\)

\(\Rightarrow P\le\frac{3}{2}\)

Vậy \(P_{max}=\frac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Hoàng Đức Khải
Xem chi tiết
Lê Thành An
Xem chi tiết
Nyatmax
6 tháng 12 2019 lúc 12:09

Ta co:

\(M=\frac{9}{1-2\left(ab+bc+ca\right)}+\frac{2}{abc}=\frac{9}{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}+\frac{2}{abc}=\frac{9}{a^2+b^2+c^2}+\frac{2}{abc}\)

Ta lai co:

\(a+b+c=1\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{1}{abc}\)

\(\Rightarrow M=\frac{9}{\Sigma_{cyc}a^2}+\Sigma_{cyc}\frac{2}{ab}\ge\frac{9}{\Sigma_{cyc}a^2}+\frac{18}{\Sigma_{cyc}ab}\left(1\right)\)

\(VT_{\left(1\right)}=\frac{9}{\Sigma_{cyc}a^2}+\frac{1}{\Sigma_{cyc}ab}+\frac{1}{\Sigma_{cyc}ab}+\frac{16}{\Sigma_{cyc}ab}\ge\frac{\left(3+1+1\right)^2}{\Sigma_{cyc}a^2+2\Sigma_{cyc}ab}+\frac{16}{\frac{\left(\Sigma_{cyc}a\right)^2}{3}}=\text{ }\frac{25}{\left(\Sigma_{cyc}a\right)^2}+48=\text{ }73\)

Dau '=' xay ra khi \(\text{ }a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
Phùng Minh Quân
7 tháng 12 2019 lúc 6:03

@my-friend 

\(M\ge\frac{9}{a^2+b^2+c^2}+\frac{36}{2\left(ab+bc+ca\right)}\ge\frac{\left(3+6\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=81\)

Dấu "=" xảy ra ra khi \(\hept{\begin{cases}\frac{3}{a^2+b^2+c^2}=\frac{6}{2\left(ab+bc+ca\right)}\\a+b+c=1\end{cases}}\Leftrightarrow a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
tth_new
7 tháng 12 2019 lúc 8:27

Trước hết dễ có: \(\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\ge abc\)

\(\Rightarrow abc\le\frac{ab+bc+ca}{9}=t\) (với \(0< t=\frac{ab+bc+ca}{9}\le\frac{\left(a+b+c\right)^2}{27}=\frac{1}{27}\))

Do đó \(M\ge\frac{9}{1-18t}+\frac{2}{t}=\frac{2\left(27t-1\right)^2}{t\left(1-18t\right)}+81\ge81\forall0< t\le\frac{1}{27}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
Leonah
Xem chi tiết