cmr trong 1 tứ giác tổng 2 đường chéo nhỏ hơn tổng 4 cạnh đối
Chứng minh rằng trong 1 tứ giác, tổng 2 đường chéo lớn hơn tổng 2 cạnh đối
Chứng minh rằng trong 1 tứ giác, tổng 2 đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
1.Cmr hình thang có 2 đáy=nhau thì 2 cạnh bên // và bằng nhau.
2.Cmr trong 1 tứ giác thì ko thể có 4 góc đều nhọn, ko thể có 4 góc đều tù.
3.Cmr trong 1 tứ giác tổng độ dài 2 đường chéo luôn lớn hơn tổng 2 cạnh đối.
4.Cho tứ giác ABCD có A^-B^=20độ, C^-D^=20độ
a)Cmr ABCD là hình thang
b)Tính A^B^C^D^ biết A^=2D^
Bài 2:
Nếu cả bốn góc trong một tứ giác đều là góc nhọn thì tổng của bốn góc đó sẽ nhỏ hơn 360 độ(trái với định lí tổng bốn góc trong một tứ giác)
Nếu cả bốn góc trong một tứ giác đều là góc tù thì tổng của bốn góc đó sẽ lớn hơn 360 độ(trái với định lí tổng bốn góc trong một tứ giác)
Ta có đpcm
1) Xét ΔABC và ΔCDA có
AB=CD(gt)
\(\widehat{BAC}=\widehat{DCA}\)(hai góc so le trong, AB//CD)
AC chung
Do đó: ΔABC=ΔCDA(c-g-c)
Suy ra: \(\widehat{ACB}=\widehat{CAD}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC(Đpcm)
Chứng minh rằng trong một tứ giác:
a) tổng 2 đường chéo lớn hơn tổng 2 cạnh đối
b) tổng 2 đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi tứ giác đó và nhỏ hơn chu vi tứ giác đó:
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
Bạn tham khảo ở đây :
/hoi-dap/question/76098.html
cmr: trong một tứ giác tổng hai đường chéo lớn hơn tổng hai cạnh đối của tứ giác đó
Gọi O là giao điểm hai đường chéo AC, BD của tứ giác ABCD.
Trong các tam giác AOB Và COD theo bất đẳng thức tam giác ta lần lượt có:
OA + OB > AB
OC + OD > CD.
Cộng theo từng vế hai bất đẳng thức trên ta được:
AB + BD > AB + CD
Chứng minh rằng trong một tứ giác thì :
a ) tổng độ dài 2 cạnh đối diện nhỏ hơn tổng độ dài 2 đường chéo
b ) tổng độ dài 2 đường chéo lớn hơn nửa chu vi của tứ giác nhưng nhỏ hơn chu vi tứ giác đó
Cho tứ giác ABCD. Chứng minh:
a) Tổng hai cạnh đối nhỏ hơn tổng hai đường chéo;
b) Tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy.
. a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.
b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).
Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD
1.Cmr trong 1 tứ giác tổng độ dài 2 đường chéo luôn lớn hơn tổng 2 cạnh đối.
2.Cho tứ giác ABCD có A^-B^=20độ, C^-D^=20độ
a)Cmr ABCD là hình thang
b)Tính A^B^C^D^ biết A^=2D^
Chứng minh rằng trong một tứ giác thì :
a ) tổng độ dài 2 cạnh đối diện nhỏ hơn tổng độ dài 2 đường chéo
b ) tổng độ dài 2 đường chéo lớn hơn nửa chu vi của tứ giác
Giúp mình 1 bài này thôi nha :3 (ko spam, sao chép nhá) Chứng minh rằng trong một tứ giác thì: a) Tổng độ dài 2 cạnh đối diện nhỏ hơn tổng độ dài hai đường chéo. b) Tổng độ dài hai đường chéo lớn hơn nửa chu vi của tứ giác.
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi tứ giác đó và nhỏ hơn chu vi tứ giác đó:
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
Cho tứ giác ABCD.CM tổng 2 cạnh đối nhỏ hơn tổng 2 đường chéo
Gọi giao điểm của 2 đường chéo AC và BD là O .
Xét \(\Delta AOB\)có :
\(OA+OB>AB\)(1)
( Bất đẳng thức trong tam giác )
Xét \(\Delta AOD\)CÓ :
\(OC+OD>CD\)(2)
Từ (1) và (2)
\(\Rightarrow OA+OB+OC+OD>AB+CD\)
\(\Rightarrow AC+BD>AB+CD\)(đpcm)
Xét \(\Delta BOC\)có :
\(OB+OC>BC\)(1)
Xét \(\Delta AOD\)CÓ :
\(OA+OD>AD\) (2)
Từ (1) và (2)
Cộng vế với vế được :
\(OB+OC+OA+OD>BC+AD\)
\(\Rightarrow AC+BD>AD+BC\)(ĐPCM)
Vậy trong tứ giác ABCD tổng 2 đường chéo lớn hơn tổng 2 cạnh đối .