cho \(\frac{x}{x^2-x+1}=2008\)
tính \(A=\frac{x^2}{x^4+x^2+1}\)
1 cho x/a+y/b=1 và xy/ab = -2 Tính\(\frac{x^3}{a^3}+\frac{y^3}{b^3}\)
2 Cho a+b+c = 0 Tính giá trị bt:
P=\(\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}+\frac{1}{a^2+b^2-c^2}\)
3Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b};x^2+y^2=1\).Chứng minh rằng
a)bx2 = ay2
b)\(\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1008}}=\frac{2}{\left(a+b\right)^{1004}}\)
Đặt \(u=\frac{x}{a};\) và \(v=\frac{y}{b}\) \(\Rightarrow\) \(\hept{\begin{cases}u,v\in Z\\u+v=1\\uv=-2\end{cases}}\)
Khi đó, ta có:
\(u+v=1\)
nên \(\left(u+v\right)^3=1\) \(\Leftrightarrow\) \(u^3+v^3+3uv\left(u+v\right)=1\)
Do đó, \(u^3+v^3=1-3uv\left(u+v\right)=1+6=7\)
Vậy, \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=7\)
\(ĐK:\) \(a,b,c\ne0\)
Ta có:
\(a+b+c=0\)
\(\Leftrightarrow\) \(a+b=-c\)
\(\Rightarrow\) \(\left(a+b\right)^2=\left(-c\right)^2\)
\(\Leftrightarrow\) \(a^2+b^2+2ab=c^2\)
nên \(a^2+b^2-c^2=-2ab\)
Tương tự với vòng hoán vị \(b\rightarrow c\rightarrow a\) ta cũng suy ra được:
\(\hept{\begin{cases}b^2+c^2-a^2=-2bc\\c^2+a^2-b^2=-2ca\end{cases}}\)
Khi đó, biểu thức \(P\) được viết lại dưới dạng:
\(P=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=-\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=-\frac{1}{2}\left(\frac{a+b+c}{abc}\right)=0\) (do \(a,b,c\ne0\) )
1. Ta có: \(\frac{x}{a}+\frac{y}{b}=1\)
\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}\right)^3=1\)
\(\Rightarrow\left(\frac{x}{a}\right)^3+3.\frac{x}{a}.\frac{y}{b}\left(\frac{x}{a}+\frac{y}{b}\right)+\left(\frac{y}{b}\right)^3=1\)
\(\Rightarrow\left(\frac{x}{a}\right)^3+\left(\frac{y}{b}\right)^3+3.\left(-2\right).1=1\)
\(\Rightarrow\left(\frac{x}{a}\right)^3+\left(\frac{y}{b}\right)^3=1+6=7\)
2.Do \(a+b+c=0\)
Ta có:
\(b^2+c^2-a^2=b^2+c^2+2bc-a^2-2bc\)
\(=\left(b+c\right)^2-a^2-2bc\)
\(=\left(a+b+c\right)\left(b+c-a\right)-2bc=-2bc\)
CM tương tự: \(a^2+b^2-c^2=-2ab\)
\(c^2+a^2-b^2=-2ca\)
Vậy \(P=\frac{1}{-2bc}+\frac{1}{-2ca}+\frac{1}{-2ab}=\frac{a+b+c}{-2abc}=0\)
3.
a)Ta có : \(x^2+y^2=1\Rightarrow x^4+2x^2y^2+y^4=1\Rightarrow x^4+y^4=1-2x^2y^2\)
Ta có :
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)
\(\Leftrightarrow\frac{bx^4+ay^4}{ab}=\frac{1}{a+b}\)
\(\Leftrightarrow\left(a+b\right)\left(bx^4+ay^4\right)=ab\)
\(\Leftrightarrow\left(a+b\right)\left(bx^4+ay^4\right)-ab=0\)
\(\Leftrightarrow abx^4+a^2y^4+b^2x^4+aby^4-ab=0\)
\(\Leftrightarrow\left(ay^2\right)^2+\left(bx^2\right)^2+ab\left(x^4+y^4\right)-ab=0\)
\(\Leftrightarrow\left(ay^2\right)^2+\left(bx^2\right)^2+ab-2abx^2y^2-ab=0\)(Do \(x^4+y^4=1-2x^2y^2\))
\(\Leftrightarrow\left(ay^2-bx^2\right)^2=0\)
\(\Leftrightarrow ay^2=bx^2\)
b) Ta có : \(x^2+y^2=1\Rightarrow-x^2=y^2-1\)
Xét \(ay^2\left(a+b\right)-ab\)
\(\Leftrightarrow\left(ay\right)^2+aby^2-ab\)
\(\Leftrightarrow\left(ay\right)^2-abx^2\)
\(\Leftrightarrow a\left(ay^2-bx^2\right)=0\)(Do \(ay^2=bx^2\))
\(\Rightarrow ay^2\left(a+b\right)-ab=0\)
\(\Rightarrow ay^2\left(a+b\right)=ab\)
\(\Rightarrow\frac{ay^2}{ab}=\frac{1}{a+b}\)
\(\Rightarrow\frac{\left(ay^2\right)^{1004}}{\left(ab\right)^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)
\(\Rightarrow\frac{\left(ay^2\right)^{1004}+\left(bx^2\right)^{1004}}{\left(ab\right)^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
\(\Rightarrow\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
\(a.\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)
\(b.\frac{x-1}{2011}+\frac{x-2}{2010}=\frac{x-3}{2009}+\frac{x-4}{2008}\)
\(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)
\(\frac{x-1}{2011}+1+\frac{x-2}{2012}+1=\frac{x-3}{2013}+1+\frac{x-4}{2014}+1\)
\(\Rightarrow\frac{x+2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
\(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}>0\)
\(\Leftrightarrow x+2010=0\Rightarrow x=-2010\)
Bạn tiếp tục áp dụng phương pháp này vào bài 2 nha nhưng bài b bạn sẽ trừ 1 ở mỗi thức
\(a)\) \(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2011}+1\right)+\left(\frac{x-2}{2012}+1\right)=\left(\frac{x-3}{2013}+1\right)+\left(\frac{x-4}{2014}+1\right)\)
\(\Leftrightarrow\)\(\frac{x-1+2011}{2011}+\frac{x-2+2012}{2012}=\frac{x-3+2013}{2013}+\frac{x-4+2014}{2014}\)
\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)
\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}-\frac{x+2010}{2013}-\frac{x+2010}{2014}=0\)
\(\Leftrightarrow\)\(\left(x-2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
Vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\)
Nên \(x-2010=0\)
\(\Rightarrow\)\(x=2010\)
Vậy \(x=2010\)
Chúc bạn học tốt ~
a.\(\left(\frac{x-1}{2011}+1\right)+\left(\frac{x-2}{2012}+1\right)=\left(\frac{x-3}{2013}+1\right)\left(\frac{x-4}{2014}+1\right)\)
=> \(\frac{x+2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)
=>\(\left(x+2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
=>x+2010=0 (vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\)\(\ne0\)
=> x = -2010
Vậy x= -2010
Câu b làm tương tự nhưng -1 nhé !
Tính \(y=\frac{1}{\sqrt{x}+\sqrt{x+1}}+\frac{1}{\sqrt{x+2}-\sqrt{x+1}}+\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+..+\frac{1}{\sqrt{x+2008}+\sqrt{x+2007}}\)với x=\(\sqrt[2007]{2008}\)
8Cho \(\frac{x}{a}+\frac{y}{b}=1\)và \(\frac{xy}{ab}=-2\)Tính \(\frac{x^3}{a^3}+\frac{y^3}{b^3}\)
10Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)cà x^2+y^2=1 Chứng minh rằng
a) bx2 =ay2
b)\(\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
25 Cho x,y,z khác 0 và a,b,c dương thỏa mãn ax+by+cz=0 cà a+b+c = 2007
Tính giá trị bieu thức P=\(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
10. a)
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Leftrightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)
\(\Leftrightarrow\left(a+b\right)\left(x^4+y^4\right)=ab\left(x^2+y^2\right)^2\Leftrightarrow\left(bx^2-ay^2\right)^2=0\Leftrightarrow bx^2=ay^2\)
b) Từ \(ay^2=bx^2\Rightarrow\frac{y^2}{b}=\frac{x^2}{a}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\frac{x^{2008}}{a^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\); \(\frac{y^{2008}}{b^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)
\(\Rightarrow\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
25. Ta có \(\left(ax+by+cz\right)^2=0\Leftrightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(abxy+bcyz+acxz\right)\)
Xét mẫu số của P : \(bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2=bc\left(y^2-2yz+z^2\right)+ac\left(x^2-2xz+z^2\right)+ab\left(x^2-2xy+y^2\right)\)
\(=y^2bc-2bcyz+bcz^2+acx^2-2xzac+acz^2+abx^2-2abxy+aby^2\)
\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2-2\left(abxy+xzac+bcyz\right)\)
\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)
\(=c\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+a\left(ax^2+by^2+cz^2\right)=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)
\(\Rightarrow P=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{2007}\)
8. \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=\left(\frac{x}{a}+\frac{y}{b}\right)^3-3.\frac{xy}{ab}\left(\frac{x}{a}+\frac{y}{b}\right)=1^3-3.\left(-2\right).1=7\)
8. \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=\left(\frac{x}{a}+\frac{y}{b}\right)^3-3.\frac{xy}{ab}\left(\frac{x}{a}+\frac{y}{b}\right)=1^3-3.\left(-2\right).1=7\)
Tìm x biết :
a) \(-\frac{2}{3}.x+4=-12\)
b) \(-\frac{3}{4}+\frac{1}{4}:x=-3\)
c) \(\frac{x+1}{2}+\frac{x+2}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
d)\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
d) \(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
<=> \(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}-\frac{x+10}{2000}-\frac{x+11}{1999}-\frac{x+12}{1998}=0\)
<=> \(\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)-\left(\frac{x+10}{2000}+1\right)-\left(\frac{x+11}{1999}+1\right)-\left(\frac{x+12}{1998}+1=0\right)\)
<=> \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
<=>\(\left(x+2010\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
<=> x+2010 = 0 vì \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\ne0\)
<=> x = -2010
tìm x
a) \(\frac{x-1}{2}+\frac{x-2}{5}=\frac{1}{4}+\frac{x-7}{10}\)
b) \(3-\frac{2}{2x-3}=\frac{2}{5}+\frac{1}{2x-3}-\frac{3}{2}\)
c)\(7\cdot\left(x-1\right)+2x\cdot\left(1-x\right)=0\)
d) \(\frac{x+1}{2008}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{x+10}{2009}+\frac{x+11}{2008}+\frac{x+12}{2007}\)
e) \(\frac{2}{\left(x-1\right)\cdot\left(x-3\right)}+\frac{5}{\left(x-3\right)\cdot\left(x-8\right)}+\frac{12}{\left(x-8\right)\cdot\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b};x^2+y^2=1\). Chứng minh:
a) bx2 = ay2
b) \(\frac{x^{2008}}{a^{2004}}+\frac{y^{2008}}{b^{2004}}=\frac{2}{\left(a+b\right)^{1004}}\)
Em vào câu hỏi tương tự tham khảo:
a) Ta có: \(x^2+y^2=1\Leftrightarrow x^4+2x^2y^2+y^4=1\)
Khi đó: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^4+2x^2y^2+y^4}{a+b}\)
<=> \(\left(a+b\right)\left(\frac{x^4}{a}+\frac{y^4}{b}\right)=x^4+2x^2y^2+y^4\)
<=> \(\frac{b}{a}x^4+\frac{a}{b}y^4=2x^2y^2\)
<=> \(\frac{x^4}{a^2}+\frac{y^4}{b^2}-\frac{2x^2y^2}{ab}=0\)
<=> \(\left(\frac{x^2}{a}-\frac{y^2}{b}\right)^2=0\)
a) \(\frac{x^2}{a}=\frac{y^2}{b}\Leftrightarrow bx^2=ay^2\)
b) \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)( dãy tỉ số bằng nhau)
Khi đó: \(\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=2\frac{x^{2008}}{a^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
1. Tính giá trị biểu thức : \(A=\frac{x^{2010}+x^{2008}+x^{2006}+...+x^2+1}{x^{2008}+x^{2004}+x^{2000}+...+x^4+1}\)với \(x=\sqrt{2009}\)
2. Cho biết \(2x^2+\frac{14}{x^2}+\frac{y^2}{2}=16\). Tìm giá trị nhỏ nhất, lớn nhất của biểu thức\(B=xy\)
3. Tìm các số nguyên dương x,y,z thỏa mãn \(16\left(xyz+x+z\right)=21\left(yz+1\right)\)
Tìm x biết:
1) \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
2) \(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
1) \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
<=> \(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
<=> \(x+1=0\) (do 1/2 + 1/3 + 1/4 - 1/5 - 1/6 khác 0)
<=> \(x=-1\)
Vậy...
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
<=> \(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)
<=> \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
<=> \(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
<=> \(x+2010=0\) (do 1/2009 + 1/2008 + 1/2007 - 1/2000 - 1/1999 - 1/1998 khác 0)
<=> \(x=-2010\)
Vậy....