Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Linh
Xem chi tiết

b; 13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\).y + 3\(xy^2\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\)

    1 = \(x^3\) - y3 - 3\(xy\)

Nguyễn Thanh Xuân
Xem chi tiết
Không Tên
15 tháng 8 2018 lúc 18:02

a)  \(x+y=1\)

=>   \(\left(x+y\right)^3=1\)

<=>  \(x^3+y^3+3xy\left(x+y\right)=1\)

<=>  \(x^3+y^3+3xy=1\)

b)  \(x-y=1\)

=>  \(\left(x-y\right)^3=1\)

<=>  \(x^3-y^3-3xy\left(x-y\right)=1\)

<=>  \(x^3-y^3-3xy=1\)

nguyễn Thái Như Ý
Xem chi tiết
Bùi Tiến Vỹ
30 tháng 6 2018 lúc 19:18

x^3+ y^3+ 3xy

=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2  -xy + y^2 + 3xy

=x^2 + 2xy + y^2

=(x+y)^2 =1

=> x^3+ y^3+ 3xy=1

nguyễn Thái Như Ý
1 tháng 7 2018 lúc 10:34

còn câu b ai giúp m vs

Đặng Vũ Ngọc Trân
Xem chi tiết

13 = (\(x+y\))3 = \(x^3\) + 3\(x^2\)y + 3\(xy^2\) + y3 = \(x^3\)+y3+3\(xy\)(\(x+y\))

1 = \(x^3\)+y3+3\(xy\)

13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\)y + 3\(xy\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\))

1 = \(x^3\) - y3 - 3\(xy\)

Muichirou- san
Xem chi tiết
Như Quỳnh
8 tháng 10 2023 lúc 19:57

   \(A=x^3+3xy+y^3\)

       \(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

       \(=1.\left(x^2-xy+y^2\right)+3xy\)

       \(=x^2-xy+y^2+3xy\)

       \(=x^2+2xy+y^2\)

       \(=\left(x+y\right)^2\)

       \(=1\)

Quang Vũ Trương
Xem chi tiết
Nguyễn Trung Hiếu
19 tháng 12 2015 lúc 12:45

Ta có:
\(x^3+3xy-y^3=x^3-y^3+3xy=\left(x-y\right)\left(x^2+xy+y^2\right)+3xy\)

\(=-\left(x^2+xy+y^2\right)+3xy=-x^2-xy+y^2+3xy=-x^2+2xy+y^2=y^2+2xy-x^2\)
\(=-\left(y^2-2xy+x^2\right)=-\left(y-x\right)^2=-\left(x-y\right)^2=-\left(-1\right)^2=-1\)

tick đúng nha

Trần quang minh
Xem chi tiết
Minh Triều
6 tháng 8 2015 lúc 11:08

x3+y3=x3+3x2y+3xy2+y2+3xy-3x2y-3xy2

=(x+y)3+3xy.(1-x-y)

=(x+y)3+3xy.[1-(x+y)]

=13+3xy.(1-1)

=1

thân mậu dũng
11 tháng 7 2017 lúc 7:46

13 - 3xy . (1-1) = 1 

>_< chúc bn học tốt

Trần Minh Khuê
Xem chi tiết
Nguyễn Ngọc Anh Minh
13 tháng 7 2023 lúc 8:56

Ta có

\(\left(x+x\right)^3=x^3+3x^2y+3xy^2+y^3=x^3+y^3+3xy\left(x+y\right)\)

\(\Rightarrow x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(\Rightarrow K=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\) Với x+y=1

\(\Rightarrow K=1^3-3xy+3xy=1\)

 

Tuanhai Tran
Xem chi tiết
Lê Song Phương
15 tháng 10 2023 lúc 21:09

a) \(A=x^3+y^3+3xy\)

\(=x^3+y^3+3xy\left(x+y\right)\) (do \(x+y=1\))

\(=x^3+3x^2y+3xy^2+y^3\)

\(=\left(x+y\right)^3\) \(=1\)

b) \(B=x^3-y^3-3xy\)

\(=x^3-y^3-3xy\left(x-y\right)\) (do \(x-y=1\))

\(=x^3-3x^2y+3xy^2-y^3\)

\(=\left(x-y\right)^3\) \(=1\)

 

hoaan
Xem chi tiết
Phạm Tuấn Đạt
24 tháng 7 2018 lúc 21:45

\(Q=x^3-y^3-3xy\)

\(\Rightarrow Q=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(\Rightarrow Q=x^2+xy+y^2-3xy\)

\(\Rightarrow Q=x^2-2xy+y^2=\left(x-y\right)^2\)

\(\Rightarrow Q=1^2=1\)

Bùi Trang
24 tháng 7 2018 lúc 21:52

\(Q=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy\)

\(x^2+y^2-2xy=\left(x-y\right)^2=1^2=1\)