giải thích tại sao khi m thay đổi 2 đường thẳng (d1) và (d2) luôn cắt nhau
Cho 2 đường thẳng (d1) : y=4x+2m-5
(d2): y=-3x+9-5m
a) CMR (d1) và (d2) luôn cắt nhau tại điểm A khi m thay đổi
b) CMR khi m thay đổi thì A luôn thuộc 1 đường cố định
cho 2 đường thẳng d1: mx+(m-1)y-2m+1=0 và d2: (1-m)x + my -4m+1=0.
a/tim m để khoảng cách từ P(0;4) tới d1 lớn nhất.
b/ c/m d1;d2 luôn cắt tại 1 điểm cố định là I. khi m thay đổi thì I chay trên đường nào.
c/ tim GTLN của diện tích tam giác IAB với A;B là các điểm cố định mà d1;d2 đi qua.
Trong mặt phẳng tọa độ Oxy, xét 2 đường thẳng (d1): y=3x-m-1 và (d2): y=2x+m-1 . Cmr khi m thay đổi ,giao điểm của (d1) và (d2) luôn nằm trên 1 đường thẳng cố định
Gọi A là giao điểm
Pt hoành độ giao điểm:
\(3x_A-m-1=2x_A+m-1\Rightarrow x_A=2m\)
\(\Rightarrow\) Tung độ giao điểm: \(y_A=5m-1\)
\(\Rightarrow y_A=\dfrac{5}{2}.2m-1=\dfrac{5}{2}x_A-1\)
\(\Rightarrow\)Giao điểm của d1 và d2 luôn thuộc đường thẳng cố định: \(y=\dfrac{5}{2}x-1\)
1 . Cho hai đường thẳng (d1):mx+(m-2)y+m+2=0 và (d2):(2-m)x+my-m-2=0
a) Tìm điểm cố định mà (d1) luôn đi qua và điểm cố định mà (d2) luôn đi qua
b) Chứng minh hai đường thẳng (d1) ,(d2) luôn cắt nhau tại một điểm I và khi m thay
đổi thì điểm I luôn thuộc một đường tròn cố định.
2 . Cho các số thực a, b, c, d thỏa mãn a > 1, b > 1, c > 1, d > 1. Chứng minh
\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge16\)
Trong mặt phẳng tọa độ Oxy, xét 2 đường thẳng (d1): y=3x-m-1 và (d2): y=2x+m-1 . Cmr khi m thay đổi ,giao điểm của (d1) và (d2) luôn nằm trên 1 đường thẳng cố định
Cho hai đường thẳng được xác định bởi
(d1): y=3x+5m+2 và (d2): y=7x-3m-6
a) xác định tọa độ giao điểmA của (d1) và (d2) khi m=0
b) CMR khi m thay đổi giao điểm A luôn chạy trên 1 đường thẳng
Trong mặt phẳng tọa độ Oxy cho hai đường thẳng d1: mx + y = 3m – 1 và d2: x + my = m + 1.
a) Tìm tọa độ giao điểm của d1 và d2 khi m = 2.
b) Tìm m để d1 và d2 song song? Tìm m để d1 và d2 trùng nhau?
c) Tìm m để d1 cắt d2 tại điểm có tọa độ (x ; y) sao cho biểu thức P = xy đạt giá trị nhỏ nhất
\(d_1:mx+y=3m-1.\\ \Leftrightarrow-mx+3m-1=y.\)
\(d_2:x+my=m+1.\\ \Leftrightarrow my=-x+m+1.\\\Leftrightarrow y=\dfrac{-x}{m}+\dfrac{m}{m}+\dfrac{1}{m}.\Leftrightarrow y=-\dfrac{1}{m}x+1+\dfrac{1}{m}.\)
Thay m = 2 vào phương trình đường thẳng d1 ta có:
\(-2x+3.2-1=y.\\ \Leftrightarrow-2x+5=y.\)
Thay m = 2 vào phương trình đường thẳng d2 ta có:
\(y=-\dfrac{1}{2}x+1+\dfrac{1}{2}.\\ \Leftrightarrow y=\dfrac{-1}{2}x+\dfrac{3}{2}.\)
Xét phương trình hoành độ giao điểm của d1 và d2 ta có:
\(-2x+5=\dfrac{-1}{2}x+\dfrac{3}{2}.\\ \Leftrightarrow\dfrac{-3}{2}x=-\dfrac{7}{2}.\\ \Leftrightarrow x=\dfrac{7}{3}.\)
\(\Rightarrow y=\dfrac{1}{3}.\)
Tọa độ giao điểm của d1 và d2 khi m = 2 là \(\left(\dfrac{7}{3};\dfrac{1}{3}\right).\)
Bài 2: Cho các đường thẳng (d1) : y = 4mx - (m+5) với m0 (d2) : y = (3m2 +1) x +(m2 -9)
a; Với giá trị nào của m thì (d1) // (d2)
b; Với giá trị nào của m thì (d1) cắt (d2) tìm toạ độ giao điểm Khi m = 2
c; C/m rằng khi m thay đổi thì đường thẳng (d1) luôn đi qua điểm cố định A
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}3m^2+1=4m\\m^2-9< >-m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3m^2-4m+1=0\\m^2+m-4< >0\end{matrix}\right.\)
=>m=1/3 hoặc m=1
b: Để hai đường cắt nhau thì 3m^2+1<>4m
=>m<>1/3 và m<>1
Khi m=2 thì (d1): \(y=8x-7\) và (d2): \(y=13x-5\)
Tọa độ giao là:
13x-5=8x-7 và y=8x-7
=>5x=-2 và y=8x-7
=>x=-2/5 và y=8x-7
=>x=-2/5 và y=-16/5-7=-51/5
Cho đường thẳng d1: y = (2m – 1)x + 3m – 2 (m là tham số)
d2 : y = (n – 2)x + 3 (n là tham số)
Tìm n biết d1 và d2 cắt nhau tại điểm J là điểm cố định mà d1 luôn đi qua với mọi m.