CMR trong các số 2b+c−2√ad;2c+d−2√ab;2d+a−2√bc;2a+b−2√cd2b+c−2ad;2c+d−2ab;2d+a−2bc;2a+b−2cd
có ít nhất hai số dương (a, b, c, d > 0).
Cho a,b,c là các số dương thỏa mãn a+b+c=3. CMR : a^2b + b^2c + c^2a >= 9a^2b^2c^2/(1+2a^2b^2c^2
BĐT cần chứng minh tương đương với :
\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)
\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)
Áp dụng BĐT Cô-si cho 3 số dương ,ta có :
\(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)
tương tự : \(b^2c+bc^2+\frac{1}{bc^2}\ge3b\), \(\left(c^2a+ca^2+\frac{1}{ca^2}\right)\ge3c\)
Cộng 3 BĐT trên theo vế, ta được :
\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge3\left(a+b+c\right)=9\)
Dấu "=" xảy ra khi a = b = c = 1
Cho các số nguyên a,b,c thỏa mãn điều kiện bc + ad=1 và ac+ 2bd =1. CMR :
a^2 + c^2 = 2b^2 -2d^2
Cho các số : \(x=2a+b-2\sqrt{cd}\)
\(y=2b+c-2\sqrt{ad}\)
\(z=2c+d-2\sqrt{ab}\)
\(t=2d+a-2\sqrt{bc}\)
với a,b,c,d >0 . CMR : tồn tại ít nhất có 2 số dương trong 4 số trên
Ta có : \(x=2a+b-2\sqrt{cd};y=2b+c-2\sqrt{ad};z=2c+d-2\sqrt{ab};t=2d+a-2\sqrt{bc}\)
\(\Rightarrow x+z=2a+b-2\sqrt{cd}+2c+d-2\sqrt{ab}=\left(a-2\sqrt{ab}+b\right)+\left(c-2\sqrt{cd}+d\right)+a+c=\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{c}-\sqrt{d}\right)^2+a+c>0\)
\(\Rightarrow x+z>0\) => Một trong hai số x và z phải có ít nhất một số dương (1) . Thật vậy , giả sử x<0 , z<0 => x+z<0 => vô lí.
Tương tự ta cũng có : \(y+t=\left(\sqrt{a}-\sqrt{d}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+b+d>0\) \(\Rightarrow y+t>0\) => Một trong hai số y và t phải có ít nhất một số dương (2)
Từ (1) và (2) ta có điều phải chứng minh.
Chứng minh rằng trong các số: \(2a+b-2\sqrt{cd};2b+c-2\sqrt{ad};2c+d-2\sqrt{ab};2d+a-2\sqrt{bc}\) có ít nhất một số dương trong đó a,b,c,d là các số dương
Cho a,b,c là các số dương. CMR
\(\frac{a}{\sqrt{2b^2+2c^2-a^2}}+\frac{b}{\sqrt{2c^2+2a^2-b^2}}+\frac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}\)
Dat \(P=\frac{a}{\sqrt{2b^2+2c^2-a^2}}+\frac{b}{\sqrt{2c^2+2a^2-b^2}}+\frac{c}{\sqrt{2a^2+2b^2-c^2}}\)
Ta co:
\(\frac{a}{\sqrt{2b^2+2c^2-a^2}}=\frac{\sqrt{3}a^2}{\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}}\ge\frac{\sqrt{3}a^2}{a^2+b^2+c^2}\)
Tuong tu:
\(\frac{b}{\sqrt{2c^2+2a^2-b^2}}\ge\frac{\sqrt{3}b^2}{a^2+b^2+c^2}\)
\(\frac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\frac{\sqrt{3}c^2}{a^2+b^2+c^2}\)
\(\Rightarrow P\ge\frac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)
Dau '=' xay ra khi \(a=b=c\)
Cho a, b và c là các số thực dương thỏa mãn
a^2 + b^2 + c^2 +2abc = 1
CMR a^2b^2 +b^2c^2 + c^2a^2 ≥ 12a^2b^2c^2
Bất đẳng thức cần chứng minh tương đương với \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge12\)
Áp dụng bất đẳng thức AM-GM ta có
\(1=a^2+b^2+c^2+2abc\ge4\sqrt[4]{2a^3b^3c^3}\)
\(\Rightarrow abc\le\frac{1}{8};\Rightarrow\text{}\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2}}\ge3\sqrt[3]{64}=12\)
suy ra điều phải chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=3. CMR: \(\dfrac{1}{2+a^2b}+\dfrac{1}{2+b^2c}+\dfrac{1}{2+c^2a}\) ≥ 1
1,Cho các số a,b,c thuộc [-2;5] Thỏa mãn:
a+2b+3c<=2
CMR:\(a^2+2b^2+3c^2\le66\)
2,Cho a,b,c thuộc [0;2] ,a+b+c=3
CMR: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge\sqrt{2}\)
Vì \(a\in\left[-2;5\right]\Rightarrow\left(a+2\right)\left(a-5\right)\le0\Leftrightarrow a^2-3a-10\le0\Leftrightarrow a^2\le3a+10\)(1)
CMTT \(b^2\le3b+10\Rightarrow2b^2\le6b+20\left(2\right)\) ; \(c^2\le3c+10\Leftrightarrow3c^2\le9c+30\)(3)
Từ (1) (2) và (3) => \(a^2+2b^2+3c^2\le3\left(a+2b+3c\right)+60\le3.2+60=66\)
BĐT đc cm
cho a,b,c là các số thực dương thỏa mãn \(a+b+c+1=4abc\).CMR
\(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\ge1\)
Cho a,b là các số thực dương. CMR: a/4b^2 + 2b/(a + b)^2 >=9/4(a + 2b)