1. Tìm GTLN của: \(M=\left(\sqrt{a}+\sqrt{b}\right)^2\) với \(a,b>0\) và \(a+b\le1\)
2. Chmr trong các số: \(2b+c-2\sqrt{ad};2c+d-2\sqrt{ab};2d+a-2\sqrt{bc};2a+b-2\sqrt{cd}\)có ít nhất hai số dương \(\left(a,b,c,d>0\right)\)
Cho các số dương a, b, c thỏa mãn: a+b+c=3 và \(M=\sqrt{a^2+2ab+2b^2}+\sqrt{b^2+2bc+2c^2}+\sqrt{c^2+2ca+2a^2}\). CMR: \(M\ge3\sqrt{5}\)
Cho các số dương a, b, c thỏa mãn: a+b+c=3 và \(M=\sqrt{a^2+2ab+2b^2}+\sqrt{b^2+2bc+2c^2}+\sqrt{c^2+2ca+2a^2}\)
Cho 3 số dương a, b, c có tổng bằng 1. Tìm GTNN của \(\sqrt{a^2+2ab+2b^2}+\sqrt{b^2+2bc+2c^2}+\sqrt{c^2+2ca+2a^2}\)
1. Tìm GTNN và GTLN của: \(A=\sqrt{1-x}+\sqrt{1+x}\)
2. Chmr trong các số: \(2b+c-2\sqrt{ad};2c+d-2\sqrt{ab};2d+a-2\sqrt{bc};2a+b-2\sqrt{cd}\) có ít nhất 2 số dương \(\left(a,b,c,d>0\right)\)
3. Chmr nếu các đoạn thẳng có độ dài a, b, c lập đc thành một tam giác thì các đoạn thẳng có độ dài \(\sqrt{a},\sqrt{b},\sqrt{c}\) cx lập được thành một tam giác
Cho 3 số dương a,b,c có tổng =1. tìm min của\(\sqrt{a^2+2ab+2b^2}+\sqrt{b^2+2bc+2c^2}+\sqrt{c^2+2ca+2a^2}\)
Cho các số dương a,b,c thỏa mãn điều kiện a+b+c =2020
Tìm giá trị nhỏ nhất của biểu thức : P=\(\sqrt{2a^2+ab+\sqrt{2b}^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\)
Cho các số dương a,b,c thỏa mãn a+b+c=1.
Chứng minh: \(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\ge\sqrt{5}\)
Cho a,b,c là các số dương. CMR
\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}+\dfrac{b}{\sqrt{2c^2+2a^2-b^2}}+\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}\)