Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ILoveMath
Xem chi tiết
Akai Haruma
29 tháng 7 2021 lúc 11:16

Lời giải:

$a^3+b^3=2(c^3-8d^3)$

$a^3+b^3+c^3+d^3=c^3+d^3+2(c^3-8d^3)$

$=3c^3-15d^3=3(c^3-5d^3)\vdots 3$ 

Khi đó:

$(a+b+c+d)^3=(a+b)^3+(c+d)^3+3(a+b)(c+d)(a+b+c+d)$

$=a^3+b^3+c^3+d^3+3ab(a+b)+3cd(c+d)+3(a+b)(c+d)(a+b+c+d)\vdots 3$ do:

$a^3+b^3+c^3+d^3\vdots 3$

$3ab(a+b)\vdots 3$

$3cd(c+d)\vdots 3$

$3(a+b)(c+d)(a+b+c+d)\vdots 3$

Vậy: 

$(a+b+c+d)^3\vdots 3$

$\Rightarrow a+b+c+d\vdots 3$

TrịnhAnhKiệt
Xem chi tiết
Nguyễn Thành Đô
Xem chi tiết
Nguyễn Thành Đô
5 tháng 7 2016 lúc 8:27

giải giúp mình bài này với

gia hưng
3 tháng 8 2022 lúc 9:54

hong bé ơi

gia hưng
3 tháng 8 2022 lúc 9:55

em ko folow anh mà anh giúp em

masterpro
Xem chi tiết
Nguyễn Linh Chi
6 tháng 10 2019 lúc 7:21

Mình chứng minh: 

\(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)

tương tự như link: Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath

Ta có:  \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\) (1 )

( => )

Cho  \(a^3+b^3+c^3⋮6\)

 (1) => \(a+b+c⋮6\)

( <= ) 

Cho:  \(a+b+c⋮6\)  

(1) => \(a^3+b^3+c^3⋮6\)

Vậy \(a^3+b^3+c^3⋮6\)<=> \(a+b+c⋮6\)

nguyễn thu phượng
Xem chi tiết
ST
13 tháng 7 2018 lúc 17:30

Thiếu điều kiện a,b,c thuộc Z

Ta có: \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên liên tiếp nên (a-1)a(a+1) chia hết cho 6

CM tương tự ta cũng có: \(b^3-b⋮6;c^3-c⋮6\)

\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)

-Nếu \(a^3+b^3+c^3⋮6\Rightarrow a+b+c⋮6\)

-Nếu \(a+b+c⋮6\Rightarrow a^3+b^3+c^3⋮6\)

=>đpcm

Nhật
Xem chi tiết
Nguyễn Nhật Minh
16 tháng 3 2016 lúc 22:24

\(S=a^{2015}+b^{2015}+c^{2015}-\left(a+b+c\right)=a\left(a^{2014}-1\right)+b\left(b^{2014}-1\right)+c\left(c^{2014}-1\right)\)

Ta có : \(a\left(a^{2014}-1\right)=a\left(a^{1007}-1\right)\left(a^{1007}+1\right)\) Bạn tự CM chia hết cho 6

=> S chia hết cho 6 

=> dpcm

Hoàng Trần Mai
Xem chi tiết
Nguyễn Phương Uyên_6A1
4 tháng 11 2018 lúc 9:40

do a + 5b chia het cho 7 nen 3a + 15b chia het cho 7 
=> 3a + 15b +7a+ 7b chia het cho 7 
=>10a + 22b chia het cho 7 
=> 10a +22b -21b chia het cho 7 (vi 21b chia het cho b) 
<=> 10a + b chia het cho 7

Hoàng Trần Mai
4 tháng 11 2018 lúc 9:48

mình nhầm  , là 5.b ko phải 5 + b !

chi nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 20:34

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6

Nguyễn Linh Nhi
Xem chi tiết