(2) giải pt: \(\sqrt{x^2-16}-2\sqrt{x+4}=0\)
giúp mk vs ạ, mai mk hc rồi
(2) giải pt:
a) \(\sqrt{4-2x}=5\)
b) \(\sqrt{25\left(x+1\right)}+\sqrt{9x+9}=16\)
\(\sqrt{4x^2+12x+9}=4\)
giúp mk vs ạ mai mk hc rồi
a, ĐKXĐ: \(x\le2\)
\(\sqrt{4-2x}=5\\ \Leftrightarrow4-2x=25\\ \Leftrightarrow2x=-21\\ \Leftrightarrow x=-10,5\left(tm\right)\)
b, ĐKXĐ: \(x\ge-1\)
\(\sqrt{25\left(x+1\right)}+\sqrt{9x+9}=16\\ \Leftrightarrow5\sqrt{x+1}+\sqrt{9\left(x+1\right)}=16\\ \Leftrightarrow5\sqrt{x+1}+3\sqrt{x+1}=16\\ \Leftrightarrow8\sqrt{x+1}=16\\ \Leftrightarrow\sqrt{x+1}=2\\ \Leftrightarrow x+1=4\\ \Leftrightarrow x=3\)
c, \(\sqrt{4x^2+12x+9}=4\Leftrightarrow4x^2+12x+9=16\\ \Leftrightarrow4x^2+12x-7=0\\ \Leftrightarrow\left(4x^2-2x\right)+\left(14x-7\right)=0\\ \Leftrightarrow2x\left(2x-1\right)+7\left(2x-1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
a: \(\Leftrightarrow4-2x=25\)
hay \(x=-\dfrac{21}{2}\)
c: \(\Leftrightarrow\left|2x+3\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=4\\2x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
(7) Cho pt: \(x^2-2mx+m^2-2=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn: \(\left|x_1^3-x^3_2\right|=10\sqrt{2}\)
giúp mk vs ạ mai mk hc rồi
1) giải pt:
\(\sqrt{x-3}-2\sqrt{x^2-9}=0\)
giúp mk vs ạ mk cần gấp
ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{x-3}=2\sqrt{x^2-9}\)
\(\Leftrightarrow x-3=4\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4\left(x+3\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{4}\left(loại\right)\end{matrix}\right.\)
giải pt:
a) \(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\)
b) \(3x+\sqrt{4x^2-8x+4}=1\)
c) \(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\)
giúp mk vs ạ mk cần gấp
a,ĐKXĐ:\(x\ge2\)
\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)
b,ĐKXĐ:\(x\in R\)
\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
c, ĐKXĐ:\(x\ge0\)
\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)
1) giải pt:
a) \(\sqrt{2-3x}=2\)
b) \(\sqrt{x^2+4x+4}=x-2\)
c) \(\sqrt{x-3}-2\sqrt{x^2-9}=0\)
giúp mk vs ạ mk cần gấp
a) ĐKXĐ: x <= 2/3
Pt --> 2 - 3x = 4
<=> 3x = -2
<=> x = -2/3 (thỏa)
b) ĐKXĐ: x >= 2
Pt --> x^2 + 4x + 4 = x^2 - 4x + 4
<=> 8x = 0<=> x = 0(loại)
a: Ta có: \(\sqrt{2-3x}=2\)
\(\Leftrightarrow2-3x=4\)
\(\Leftrightarrow3x=-2\)
hay \(x=-\dfrac{2}{3}\)
b: Ta có: \(\sqrt{x^2+4x+4}=x-2\)
\(\Leftrightarrow\left|x+2\right|=x-2\)
\(\Leftrightarrow x+2=2-x\left(x< -2\right)\)
\(\Leftrightarrow x=0\left(loại\right)\)
(1) tính
a) \(\sqrt{3}+2\sqrt{12}+4\sqrt{75}-\sqrt{300}\)
b) \(2\sqrt{20}+\sqrt{\left(1-\sqrt{5}\right)^2}-\dfrac{20}{\sqrt{5}+1}\)
c) \(\dfrac{6}{\sqrt{13}-1}+\dfrac{6}{\sqrt{13}+1}\)
d) \(\sin^238^0+\cot23^0+\sin^252^0-\tan67^0\)
giúp mk vs ạ mai mk hc rồi
\(a,=\sqrt{3}+4\sqrt{3}+20\sqrt{3}-10\sqrt{3}=15\sqrt{3}\\ b,=4\sqrt{5}+\sqrt{5}-1-\dfrac{20\left(\sqrt{5}-1\right)}{4}\\ =5\sqrt{5}-1-5\sqrt{5}+5=4\\ c,=\dfrac{6\sqrt{13}+6+6\sqrt{13}-6}{\left(\sqrt{13}-1\right)\left(\sqrt{13}+1\right)}=\dfrac{12\sqrt{13}}{12}=\sqrt{13}\\ d,=\left(\sin^238^0+\cos^238^0\right)+\left(\tan67^0-\tan67^0\right)=1+0=1\)
(1) tính
a) \(\sqrt{3}+2\sqrt{12}+4\sqrt{75}-\sqrt{300}\)
b) \(2\sqrt{20}+\sqrt{\left(1-\sqrt{5}\right)^2}-\dfrac{20}{\sqrt{5}+1}\)
c) \(\dfrac{6}{\sqrt{13}-1}+\dfrac{6}{\sqrt{13}+1}\)
d) \(\sin^238^0+\cot23^0+\sin^252^0-\tan67^0\)
giúp mk vs ạ mai mk hc rồi
a: \(=\sqrt{3}+4\sqrt{3}+4\cdot5\sqrt{3}-10\sqrt{3}\)
\(=15\sqrt{3}\)
b: \(=2\cdot2\sqrt{5}+\sqrt{5}-1-5+5\sqrt{5}\)
=-6
2) giải pt
a) \(\sqrt{4-2x}=5\)
b) \(\sqrt{25\left(x+1\right)}+\sqrt{9x+9}=16\)
c) \(\sqrt{4x^2+12x+9}=4\)
giúp mk vs ạ mk cần gấp
a) ĐKXĐ: x <= 2
pt --> 4 - 2x = 25 <=> x = -21/2 (thỏa)
b) ĐKXĐ: x >= -1
pt <=> 8sqrt(x + 1)=16 <=> sqrt(x+1)=2 --> x + 1 = 4 <=> x = 3
(1) rút gọn biểu thức:
a) A= \(3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
b) B= \(\sqrt{7-4\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)
c) C= \(\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)
d) D= \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)
giúp mk vs ạ mai mk hc rồi
a) \(\Leftrightarrow A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)
b) \(\Leftrightarrow B=\sqrt{7-2\sqrt{12}}+\sqrt{12+2\sqrt{27}}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}=2-\sqrt{3}+3+\sqrt{3}=5\)
c) \(\Leftrightarrow C=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{6}{4}=\dfrac{3}{2}\)
d) \(\Leftrightarrow D=3-\left(-2\right)-5=0\)