Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Dương Ngọc Nhi
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 9 2020 lúc 21:18

Xét khai triển: \(\left(x+1\right)^{2n}=C_{2n}^0+C_{2n}^1x+C_{2n}^2x^2+...+C_{2n}^{2n}x^{2n}\)

Thay \(x=1\) ta được:

\(2^{2n}=C_{2n}^0+C_{2n}^1+...+C_{2n}^{2n}\)

\(\Leftrightarrow4^n=C_{2n}^0+C_{2n}^1+...+C_{2n}^{2n}\)

Nguyễn Đăng Nam
Xem chi tiết
Mưa đầu mùa[ Do you know...
17 tháng 5 2018 lúc 22:17

what are you doing

Nguyễn Đăng Nam
18 tháng 5 2018 lúc 8:51

 

tìm n nhé

3C\(^0\)\(_{2n}\) \(-\) \(\dfrac{1}{2}\)C\(^1\)\(_{2n}\) \(-\) \(\dfrac{1}{4}\)C\(^3\)\(_{2n}\) +...+ \(\dfrac{3}{2n+1}\)C\(^{2n}\)\(_{2n}\) \(=\) \(\dfrac{10923}{5}\)

 

Phuong Tran
Xem chi tiết
thaoanh le thi thao
Xem chi tiết
Akai Haruma
20 tháng 1 2018 lúc 15:43

Lời giải:

Theo nhị thức New-ton:

\((x+1)^{2n}=C^{0}_{2n}+C^{1}_{2n}x+C^2_{2n}x^2+...+C^{2n}_{2n}x^{2n}\)

\((x-1)^n=C^0_{2n}-C^1_{2n}x+C^2_{2n}x^2-.....-C^{2n-1}_{2n}x^{2n-1}+C^{2n}_{2n}x^{2n}\)

Trừ theo vế ta có:

\(\frac{(x+1)^{2n}-(x-1)^{2n}}{2}=C^1_{2n}x+C^3_{2n}x^3+...+C^{2n-1}_{2n}x^{2n-1}\)

\(\Rightarrow \int ^{1}_{0}\frac{(x+1)^{2n}-(x-1)^{2n}}{2}dx=\int ^{1}_{0}(C^1_{2n}x+C^3_{2n}x^3+...+C^{2n-1}_{2n}x^{2n-1})dx\)

Xét vế trái:

\(\text{VT}=\frac{1}{2}\int ^{1}_{0}(x+1)^{2n}d(x+1)-\frac{1}{2}\int ^{1}_{0}(x-1)^{2n}d(x-1)\)

\(=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{1}{2}\left ( \frac{(x+1)^{2n+1}-(x-1)^{2n+1}}{2n+1} \right )=\frac{2^{2n}-1}{2n+1}\)

Xét vế phải:

\(\text{VP}=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{C^{1}_{2n}x^2}{2}+\frac{C^{3}_{2n}x^4}{4}+....+\frac{C^{2n-1}_{2n}x^{2n}}{2n} \right )=\frac{1}{2}C^{1}_{2n}+\frac{1}{4}C^3_{2n}+...+\frac{1}{2n}C^{2n-1}_{2n}\)

Vậy \(A=\frac{2^{2n}-1}{2n+1}\)

Trần
Xem chi tiết
Nguyễn Phương HÀ
15 tháng 8 2016 lúc 12:42

Hỏi đáp Toán

Lê Song Phương
Xem chi tiết
Trần
Xem chi tiết
Khánh Lương
31 tháng 8 2016 lúc 1:15

1=(2n+1)C0, (2n+1)Cn=(2n+1)C(n+1)...

 

Tường Nguyễn Thế
Xem chi tiết
Darlingg🥝
Xem chi tiết
Trần Quốc Bảo
18 tháng 12 2021 lúc 9:06

xin lỗi bài này ẻm ko biết làm

Khách vãng lai đã xóa