Cho x,y thuộc N* cmr (x^2+y^2)^2 là ước của (x+y)(x^3+y^3) thì (x^2+y^2)^2= (x+y)(x^3+ y^3)
( x^2+y^2)^2 là ước của (x+y)(x^3+y^3) thì (x^2+y^2)^2= (x+y)(x^3+ y^3)
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
cho x, y, m, n, thuộc Z thoa mãn đẳng thức x + y = m + n . CMR S = x^2 + y^2 + m^2 + n^2 là tổng bình phương 3 số nguyên
Bài 1: Cho a, b, x, y thuộc Z, trong đó x, y không đối nhau. Chứng minh rằng nếu a.x - b.y ⁞ x+y thì a.y - b.x ⁞ x+y thì a.y - b.x ⁞ x+y.
Bài 2: Cho:
A = 1 + 2 - 3 - 4 + 5 + 6 -...- 99 - 100
a) A có chia hết cho 2, 3, 5 không?
b) Tìm số các ước nguyên của A.
Bài 3: Tìm x, y thuộc Z biết:
a) xy +3x - 7y = 21.
b) xy + 3x - 2y =11.
c) [x+1] + [x+2] +...+ [x+100] = -1.
bài 1
Xét tổng : (ax - by) + (ay - bx) = ax - by + ay - bx = (ax + ay) - (by + bx) = a(x + y) - b(x + y) = (a - b)(x + y) chia hết cho x + y .
Vậy (ax - by) + (ay - bx) chia hết cho x + y (1)
Mà ax - by chia hết cho x + y (2)
Từ (1) và (2) suy ra ay - bx chia hết cho x + y (đpcm)
bài 2
a)
a) Gộp thành từng nhóm bốn số, ta được 25 nhóm, mỗi nhóm bằng - 4. Do đó A = - 100. Vì thế A chia hết cho 2, chia hết cho 5, không chia hết cho 3.
b)
b, A = 2^2*5^2
A có 9 ước tự nhiên và 18 ước nguyên
bài 3 bạn tự làm nhé dài lắm mình mỏi tay rồi
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Cho x^2-y=a ; y^2-z=b ;z^2-x=c
(a,b,c là các hằng số cho trước)
CMR :giá trị biểu thức sau không phụ thuộc vào x , y ,z
P=x^3(z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
1, x,y,z∈N*. CMR x+3z-y là hợp số biết `x^2+y^2=z^2`
2,Tìm n∈N* để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\)
3, CMR:\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\forall x\ne y,xy\ne0\)
2.
\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)
\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)
*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)
*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)
\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)
\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)
\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)
\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)
-Vậy \(n=1\)
1. \(x^2+y^2=z^2\)
\(\Rightarrow x^2+y^2-z^2=0\)
\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)
-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.
\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.
-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.
*Xét \(\left(x-z\right)⋮2\):
\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.
*Xét \(\left(x+z\right)⋮2\):
\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.
CMR với mọi số thực x, y, z thì: (x^2+y^2)^3-(y^2+z^2(^3+(z^2-x^2)^3=3.(x^2+y^2).(y^2+z^2).(x^2-z^2)
Câu 1:a, Cho x,y thoả mãn y(x+y)khác 0 và x^2-xy=2y^. Tính giá trị của biểu thức A= ( 1007x-y)/ (x+2012y)
b, Tìm đa thức f(x) biết f(x) chia cho x-a thì dư 3, f(x) chia cho x+1 thì dư 5, còn chia cho x^2-1 thì được thương là x^2+3 và còn dư.
câu 2: Cho phương trình (x+2)/(x-m)=(x+1)/(x-1) (m là tham số). tìm giá trị của m để phương trình trên vô nghiệm.
Câu 3:Cho các số thực dương x,y,z thoả mãn x+y+z=3, CMR: 1/(x^2+x)+1/(y^2+y)+1?(z^2+z)>=3/2
Cmr giá trị của mỗi đa thức sau không phụ thuộc vào x
a) (x+2)^3+(x-2)^3-2x.(x+12-2x^2).(x+12)-2x^2
b)(x-1)^3-(x+1)^3+6.(x+1).(X-1)
c)y.(x^2-y^2).(x^2+y^2)-y.(x^4-y^4)
\(\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=-2\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6\left(x^2-1\right)\)
\(=-2\left(3x^2+1\right)+6x^2-6\)
\(=-6x^2-2+6x^2-6\)
\(=-8\)
Vậy giá trị của của biểu thức không phụ thuộc vào biến x.
sao bạn ko trả lời hết câu hỏi,mình đang cần gấp ><