( x^2+y^2)^2 là ước của (x+y)(x^3+y^3) thì (x^2+y^2)^2= (x+y)(x^3+ y^3)
Cho x,y là các số nguyên dương. Xét tính đúng/sai của mệnh đề sau:
Nếu (x2+y2)2 là ước của (x+y)(x3+y3) thì (x2+y2)2 = (x+y)(x3+y3)
CM:
a,-(x+y)^2-(x-y)^2=4xy
b,-3(x^2+y^2+z^2)-(x-y)^2-(y-x)^2-(z-x)=(x+y+z)^2
cho x y thay đổi thỏa mãn p<x;y<1 tìm gtln của P=x+y+x(1-y^2)^(1/2)+y(1-x^2)^(1/2)
\(\left\{{}\begin{matrix}x,y,z\in R\\x^2+y^2+z^2=3\end{matrix}\right.\) Chung minh:
\(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
câu 1.cho đường tròn (c) : \(x^2+y^2+4x+4y-17=0\). viết phương trình tiếp tuyến của (C) biết tiếp tuyến tạo với Õ một góc \(60^0\)
câu 2. cho hai đường trong (c1)\(x^2+y^2-2x-2y=0\), (c2) \(x^2+y^2-4x-6y-3=0\) viết phương trình tiếp tuyến chung của 2 đường tròn
Chứng minh bằng phản chứng:
1/ Với 2\(\le n\in Z\) CMR: 2<(1+\(\dfrac{1}{n}\))\(^n\)<3
2/ Với mọi x, y>0 và n \(\in\)Z. CMR:
\(\left(x^2+y^2\right)^n\ge2^nx^ny^n+\left(x^n-y^n\right)^2\)
3/Cho a, b thỏa mãn: a+b = 2018. CMR: \(a^n+b^n\ge2.1009^n\) vỡi mọi n \(\in\)N*
Chứng minh bằng qui nạp
a/ với 2 \(\le n\in Z\). CMR: 2< \(\left(1+\dfrac{1}{n}\right)^n< 3\)
b/ Với x, y > 0 và n \(\in N\)*. CMR : \(\left(x^2+y^2\right)^n\ge2^nx^ny^n+\left(x^n-y^n\right)^2\)
c/ Cho a+b = 2018. CMR : \(a^n+b^n\ge2.1009^n\). với mọi n\(\in\)N*
Xét tính đúng sai của mỗi mệnh đề sau:
∀x,y∈R,x^2+xy+y^2≥0
∃x,y∈R,x^2+y^2+xy<0
y=-x-6x có GTLN bằng 9
∀n∈N,(n^2+7n+12)⋮2