Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Xuân Sơn Nữ
Xem chi tiết
Trần Thanh Huyền
19 tháng 12 2014 lúc 8:38

Chắc chắn sai đề vì n(n+1) luôn là số lẻ làm sao mà chia hết cho 2 được

Trần Thanh Huyền
19 tháng 12 2014 lúc 9:04

Ừ nhỉ,quên mất

Xin lỗi nha!

Năm Phạm Thị
Xem chi tiết
Năm Phạm Thị
4 tháng 10 2023 lúc 20:23

GIÚP MÌNH VỚI

 

Nguyễn Đức Trí
5 tháng 10 2023 lúc 15:29

loading...

loading...

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2018 lúc 16:54

* Với n = 2 ta có 2 2 + 1 > 2.2 + 3 ⇔ 8 > 7  (đúng).

Vậy (*) đúng với n= 2 .

 * Giả sử với n = k , k ≥ 2  thì (*) đúng, có nghĩa ta có: 2 k + 1   >     2 k   +   3 (1).

* Ta phải chứng minh (*) đúng với n = k + 1, có nghĩa ta phải chứng minh:

2 k + 2 > 2 ( k + 1 ) + 3

Thật vậy, nhân hai vế của (1) với 2 ta được:

2.2 k + 1 > 2 2 k + 3 ⇔ 2 k + 2 > 4 k + 6 > 2 k + 5 .

 ( vì 4k + 6 >  4k +  5 >  2k +  5 )

Hay 2 k + 2   >   2   ( k + 1 ) +     3

Vậy  (*) đúng với n = k + 1 .

Do đó theo nguyên lí quy nạp, (*) đúng với mọi số nguyên dương  ≥ 2

Năm Phạm Thị
Xem chi tiết
keditheoanhsang
4 tháng 10 2023 lúc 19:46

Bước 1: Chứng minh công thức đúng cho n = 1. Khi n = 1, ta có: 1² = 1 = 1 . (1 + 1) . (2 . 1 + 1) / 6 = 1. Vậy công thức đúng cho n = 1.

Bước 2: Giả sử công thức đúng cho n = k, tức là 1² + 2² + ... + k² = k . (k + 1) . (2k + 1) / 6. Ta cần chứng minh công thức đúng cho n = k + 1, tức là 1² + 2² + ... + k² + (k + 1)² = (k + 1) . (k + 1 + 1) . (2(k + 1) + 1) / 6.

Bước 3: Chứng minh công thức đúng cho n = k + 1. Ta có: 1² + 2² + ... + k² + (k + 1)² = (k . (k + 1) . (2k + 1) / 6) + (k + 1)² = (k . (k + 1) . (2k + 1) + 6(k + 1)²) / 6 = (k . (k + 1) . (2k + 1) + 6(k + 1) . (k + 1)) / 6 = (k + 1) . ((k . (2k + 1) + 6(k + 1)) / 6) = (k + 1) . ((2k² + k + 6k + 6) / 6) = (k + 1) . ((2k² + 7k + 6) / 6) = (k + 1) . ((k + 2) . (2k + 3) / 6) = (k + 1) . ((k + 1 + 1) . (2(k + 1) + 1) / 6).

Vậy, công thức đã được chứng minh đúng cho mọi số tự nhiên n khác 0.

Nga Nguyễn
Xem chi tiết
Aquarius_Love
16 tháng 4 2017 lúc 20:08

tk ủng hộ mk nha mọi người

Nguyễn Trọng Huy Hào
Xem chi tiết
lý vũ huy tuấn
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 13:37

a:

\(1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(1\right)\)

Đặt \(S=1^2+2^2+...+n^2\)

Với n=1 thì \(S_1=1^2=1=\dfrac{1\left(1+1\right)\left(2\cdot1+1\right)}{6}\)

=>(1) đúng với n=1

Giả sử (1) đúng với n=k

=>\(S_k=1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\)

Ta sẽ cần chứng minh (1) đúng với n=k+1

Tức là \(S_{k+1}=\dfrac{\left(k+1+1\right)\cdot\left(k+1\right)\left(2\cdot\left(k+1\right)+1\right)}{6}\)

Khi n=k+1 thì \(S_{k+1}=1^2+2^2+...+k^2+\left(k+1\right)^2\)

\(=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(=\left(k+1\right)\left(\dfrac{k\left(2k+1\right)}{6}+k+1\right)\)

\(=\left(k+1\right)\cdot\dfrac{2k^2+k+6k+6}{6}\)

\(=\left(k+1\right)\cdot\dfrac{2k^2+3k+4k+6}{6}\)

\(=\dfrac{\left(k+1\right)\cdot\left[k\left(2k+3\right)+2\left(2k+3\right)\right]}{6}\)

\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

\(=\dfrac{\left(k+1\right)\left(k+1+1\right)\left[2\left(k+1\right)+1\right]}{6}\)

=>(1) đúng

=>ĐPCM
b: \(A=1\cdot5+2\cdot6+3\cdot7+...+2023\cdot2027\)

\(=1\left(1+4\right)+2\left(2+4\right)+3\left(3+4\right)+...+2023\left(2023+4\right)\)

\(=\left(1^2+2^2+3^2+...+2023^2\right)+4\left(1+2+2+...+2023\right)\)

\(=\dfrac{2023\cdot\left(2023+1\right)\left(2\cdot2023+1\right)}{6}+4\cdot\dfrac{2023\left(2023+1\right)}{2}\)

\(=\dfrac{2023\cdot2024\cdot4047}{6}+\dfrac{2023\cdot2024}{1}\)

\(=2023\left(\dfrac{2024\cdot4047}{6}+2024\right)⋮2023\)

\(A=\dfrac{2023\cdot2024\cdot4047}{6}+2023\cdot2024\)

\(=2024\left(2023\cdot\dfrac{4047}{6}+2023\right)\)

\(=23\cdot11\cdot8\cdot\left(2023\cdot\dfrac{4047}{6}+2023\right)\)

=>A chia hết cho 23 và 11

Vũ Nhật Quang
Xem chi tiết
Nguyễn Khánh Huyền
Xem chi tiết
Nguyễn Đức Trí
4 tháng 10 2023 lúc 18:29

\(A=405^n+2^{405}+17^{37}\left(n\in N\right)\)

\(\Rightarrow A=\overline{.....5}+2^{4.101}.2+17^{4.9}.17\)

\(\Rightarrow A=\overline{.....5}+\overline{.....6}.2+\overline{.....1}.17\)

\(\Rightarrow A=\overline{.....5}+\overline{.....2}+\overline{.....7}\)

\(\Rightarrow A=\overline{......4}\)

Vì chữ số tận cùng của \(A\) là \(4\)

Nên \(A=405^n+2^{405}+17^{37}\) không chia hết cho \(10\)

\(\Rightarrow dpcm\)

Phạm Anh tuấn
Xem chi tiết