Cho (o) 2 dây AB, AC vuông góc với nhau. Biết AB=10cm; AC=24
a) Tính khoảng cách từ mỗi dây đến tâm
b) Chứng minh 3 điểm O,B,C thẳng hàng
c) TÍnh đường kính của (o)
Cho (o) 2 dây AB, AC vuông góc với nhau. Biết AB=10cm; AC=24
a) Tính khoảng cách từ mỗi dây đến tâm
b) Chứng minh 3 điểm O,B,C thẳng hàng
c) TÍnh đường kính của (o)
1. Cho đường tròn (O ; 10cm). Dây AB = 16cm. Tiếp tuyến tại A của đường tròn cắt đường kính vuông góc với AB tại C. Hãy tính khoảng cách từ tâm O đến dây AB.
2. Cho đường tròn (O) có đường kính AB. Vẽ dây AC của đường tròn
a) So sánh AB và BC
b) Tam giác ABC là tam giác gì. Vì sao?
c) Từ O kẻ OM // BC (điểm M thuộc AC) Chứng minh AM = MC
Câu 1:
Gọi giao điểm của OC với AB là H
Vì OC\(\perp\)AB nên OH\(\perp\)AB tại H
=>OH là khoảng cách từ O xuống dây AB
Ta có: ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>HA=HB=AB/2=8(cm)
ΔOHA vuông tại H
=>\(OH^2+HA^2=OA^2\)
=>\(OH^2=10^2-8^2=36\)
=>\(OH=\sqrt{36}=6\left(cm\right)\)
Câu 2:
a: Xét (O) có
AB là đường kính
BC là dây
Do đó: AB>BC
b: Xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
c: Xét ΔACB có
O là trung điểm của AB
OM//CB
Do đó: M là trung điểm của AC
Cho đường tròn(O;10cm) và dây AB không đi qua tâm. Vẽ OI vuông góc với AB tại I. Tính độ dài dây AB biết OI=6cm
Cho đường tròn tâm O, dây AB. Trên nửa mặt phẳng bờ AB vẽ 2 dây AC và BD bằng nhau cắt nhau tại E. Cmr: OE vuông góc với AB
AC = BD (gt)
=> sđ cung AC = sđ cung BD (Trong đường tròn các cung có độ dài dây trương cung bằng nhau thì có số đo bằng nhau )
Ta có
sđ cung ACD = sđ cung AC + sđ cung CD
sđ cung CDB = sđ cung BD + sđ cung CD
=> sđ cung ACD = sđ cung CDB
\(\Rightarrow sđ\widehat{EAB}=sđ\widehat{EBA}\) (2 góc nội tiếp đường tròng chắn 2 cung CDB và cung ACD có số đo bằng nhau)
\(\Rightarrow\Delta EAB\) cân tại E
Ta có
OA = OB (bán kính (O))
=> OE là trung tuyến của tg EAB
=> \(OE\perp AB\) (trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao)
Vì 2 dây AC và BD bằng nhau ⇒ cách đều tâm O ⇒ OC = OD
△AOC = △BOD (c.c.c) ⇒ góc A = B
⇒ △ABE cân tại E mà EO là trung tuyến ứng với AB
⇒ EO vuông góc với AB tại O
Cho đt O, đk AB =10cm , dây CD vuông góc với AB tại H, H nằm giữa OB , tính HA biết CD =6cm
Ta có \(OA=OC=\dfrac{1}{2}AB=5\left(cm\right)\) (OC là bán kính)
Theo t/c đường kính cắt dây cung thì H là trung điểm CD
Do đó \(CH=HD=\dfrac{1}{2}CD=3\left(cm\right)\)
Pytago: \(OH=\sqrt{OC^2-HC^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Do đó \(HA=OA-OH=5-4=1\left(cm\right)\)
Cho tam giác ABC có AB=AC=10cm, BC=12cm. Vẽ AH vuông góc BC tại H. Từ H vẽ HM ⊥ AB M ∈ A B và vẽ HN ⊥ AC N ∈ A C . Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau tại O.
Tính AH
A. 10cm
B. 5cm
C. 6cm
D. 8cm
Cho hình thang ABCD có AB//CD góc A băng 90 độ hai đường chéo AC và BD vuông góc với nhau tại O biết AB=4cm , AD=10cm .Tính AC,BD,BC và diện tích hình thang ABCD .
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)
Cho đường tròn tâm O đường kính AB = 10cm, vẽ dây BC = 6cm. Vẽ dây CD vuông góc với AB tại I.
a) Chứng minh tam giác ABC vuông tại C.
b) Tính độ dài AC, CD.
Cho tam giác ABC có AB=AC=10cm, BC=12cm. Vẽ AH vuông góc BC tại H. Từ H vẽ HM ⊥ AB M ∈ A B và vẽ HN ⊥ AC N ∈ A C . Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau tại O.
Chọn câu đúng nhất
A. AH là tia phân giác của góc A
B. ∆ B H M = ∆ C H N
C. Cả A,B đều đúng
D. Cả A,B đều sai