Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Trung Hiêu
Xem chi tiết
Hà My Trần
Xem chi tiết
Hà My Trần
Xem chi tiết
Linh Hoa Thị Thùy
Xem chi tiết
pham thi thu trang
14 tháng 6 2017 lúc 20:58

Gọi A= \(\frac{a-b}{c}\)+  \(\frac{b-c}{a}\)+  \(\frac{c-a}{b}\), ta có:

A*\(\frac{c}{a-b}\)= 1+\(\frac{c}{a-b}\)(\(\frac{b-c}{a}\)+\(\frac{c-a}{b}\))

= 1+ \(\frac{c}{a-b}\)\(\frac{b^2-bc+ac-a^2}{ab}\)=  1 +\(\frac{c}{a-b}\)*\(\frac{\left(a-b\right)\left(c-a-b\right)}{ab}\)=  1+\(\frac{2c^2}{ab}\)=  1-+\(\frac{2c^3}{abc}\)

Tương tụ A* \(\frac{a}{b-c}\)= 1+\(\frac{2a^3}{abc}\)

               A*\(\frac{b}{c-a}\)=  1+ \(\frac{2b^3}{abc}\)

Vậy S =  3 +\(\frac{2\left(a^3+b^3+c^3\right)}{abc}\)= 9  

ở phần a3 + b3 + c3 thì tổng đấy sẽ bằng 3abc , đoạn đấy mk làm tắt nhé, bạn tự thay vào hehe

Linh Hoa Thị Thùy
15 tháng 6 2017 lúc 7:39

cảm ơn nhiều!!!

Xem chi tiết
Lê Thị Thục Hiền
6 tháng 7 2021 lúc 14:14

1, \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)

Do đó \(\left\{{}\begin{matrix}3a=b+c+d\left(1\right)\\3b=a+c+d\left(2\right)\\3c=a+b+d\left(3\right)\\3d=a+b+c\left(4\right)\end{matrix}\right.\)

Từ (1) và (2) \(\Rightarrow3\left(a+b\right)=a+b+2c+2d\Leftrightarrow2\left(a+b\right)=2\left(c+d\right)\Leftrightarrow a+b=c+d\Leftrightarrow\dfrac{a+b}{c+d}=1\)

Tương tự cũng có: \(\dfrac{b+c}{a+d}=1;\dfrac{c+d}{a+b}=1;\dfrac{d+a}{b+c}=1\)

\(\Rightarrow A=4\)

2, Có \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

Do đó \(\dfrac{x^2}{4}=\dfrac{1}{4};\dfrac{y^2}{16}=\dfrac{1}{4};\dfrac{z^2}{36}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right),\left(-1;-2;-3\right)\)

Nguyễn Ngọc Lộc
6 tháng 7 2021 lúc 14:09

Bài 2 :

a, Ta có : \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)

Vậy ...

b, Ta có : \(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{5+7}=\dfrac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

\(\Rightarrow y=3\)

Vậy ...

Vũ Đức Vương
Xem chi tiết
le thi khanh huyen
Xem chi tiết
Đinh Đức Hùng
6 tháng 11 2019 lúc 17:33

Đặt \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)

Ta có \(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\)

\(=1+\frac{c}{a-b}.\frac{b^2-bc+ca-a^2}{ab}\)

\(=1+\frac{c}{a-b}.\frac{\left(b-a\right)\left(a+b-c\right)}{ab}=1+\frac{2c^2}{ab}\)

Tương tự : \(M.\frac{a}{b-c}=1+\frac{2a^2}{bc};M.\frac{b}{c-a}=1+\frac{2b^2}{ca}\)

Do vậy \(A=3+2.\frac{a^3+b^3+c^3}{abc}=9\left(do.a+b+c=0.thi.a^3+b^3+c^3=3abc\right)\)

Khách vãng lai đã xóa
Mi Trần
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 7:47

a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

b) Đề bài sai ^^

ミᵒ°LIZ︵♏°ᵒ彡²ᵏ⁹
Xem chi tiết
Nguyễn Tân Vương
12 tháng 1 2022 lúc 10:51

đề có j sai ko bn?