Biết \(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{a}\)biết a,b,c khác 0 tính gt của biểu thức:\(\frac{a^{72}.b^{73}.c^{74}}{b^{219}}\)
Cho ba số nguyên a,b,c đôi một khác nhau và khác 0 thỏa mãn:a+b+c=0
Tính giá trị của \(P=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)
1.Cho a+b+c+d ≠0 và \(\frac{a}{b+c+d}\)=\(\frac{b}{a+c+d}\)=\(\frac{c}{a+b+d}\)=\(\frac{d}{a+b+c}\)
Tính giá trị của A=\(\frac{a+b}{c+d} \)+\(\frac{b+c}{a+d}\)+\(\frac{c+d}{a+b}\)+\(\frac{d+a}{b+c}\)
2.Tìm x,y,z biết :
a)\(\dfrac{x^3}{8}\)=\(\dfrac{y^3}{64}\)=\(\dfrac{z^3}{216}\)và \(x^2\)+\(y^2\)+\(z^2\)=14
b)\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{6x}\)
Cho a,b,c là ba số khác 0 và a+b+c khác 0 thỏa mãn:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\). Tính giá trị của biểu thức: P=\(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\)
Cho ba số a,b,c khác 0 thỏa mãn: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\) .
Tính giá trị của biểu thức \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
Cho 3 số a, b, c khác 0 và khác nhau thỏa mãn điều kiện\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Tính giá trị của biểu thức P= \(\frac{a+b}{c}+\frac{c+a}{b}+\frac{b+c}{a}\)
Cho :
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
Tính giá trị của mỗi tỉ số biết a,b,c,d khác 0
cho a,b,c khác 0 và \(\frac{b+c-a}{c}=\frac{a+b+c}{b}=\frac{b-c+a}{a}\).Tính giá trị của biểu thức A=\(\frac{\left(b-a\right).\left(c+b\right).\left(a+c\right)}{a.b.c}\)
Cho 3 số a,b,c khác 0 và a + b + c khác 0 thõa mãn điều kiện : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Tính giá trị của biểu thức :
P = \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)