cho x là số thực thỏa mãn x^2−x là số nguyên khác 1 và x^3−2x cũng là số nguyên
CMR: x là số nguyên
Chờ x, y là các số thực thỏa mãn :x^2 + y^2, x+y,x^4 + y^4 là các số nguyên.C/m 2x^2y^2,x^3 +y^3 cũng là các số nguyên
Cho p là số nguên tố thỏa mãn p+3 và p+10 cũng là số nguyên tố. Tìm số nguyên x sao cho(2x–1)²–p³=22.
Lời giải:
Nếu $p$ lẻ thì $p+3$ chẵn. Khi đó $p+3$ là nguyên tố khi $p+3=2$
$\Rightarrow p=-1$ (vô lý- loại)
Nếu $p$ chẵn thì $p+10$ chẵn. Khi đó $p+10$ là nguyên tố khi $p+10=2$
$\Rightarrow p=-8$ (vô lý - loại)
Vậy không tồn tại số nguyên tố $p$ thỏa mãn đề.
cho x là số thực thỏa mãn x3-x và x4-x là số nguyên. Cm x là số nguyên
1:tập hợp các chữ số tận cùng có thể có của 1 số chính phương là?
2:số nguyên x thỏa mãn 55-(6-x)=15-(-6) là x=?
3:số nguyên x thỏa mãn x-(-25-17=2x)=6+x là x=?
4:tìm số nguyên x sao cho -19-x là số nguyên âm nhỏ nhất có ba chữ số.vậy x=........
1. {0;1;4;5;6;9}
2. 55-(6-x) = 9
6-x = 55-9
6-x = 46
x = 6-46
x = -40
3. 6+x = x-(-6) => -25-17-2x = -6
-42-2x = -6
2x = -42-(-6)
2x = -36
x = -36/2
x = -18
4. Số nguyên âm nhỏ nhất có 3 chữ số là -999 => -19-x = -999
x = -19-(-999)
x = 980
(2x+1)(y-3)=48
mà 2x+1 lẻ; y-3>=-3 vì x,y là các số tự nhiên
nên \(\left(2x+1\right)\left(y-3\right)=1\cdot48=3\cdot16\)
=>\(\left(2x+1;y-3\right)\in\left\{\left(1;48\right);\left(3;16\right)\right\}\)
=>\(\left(2x;y\right)\in\left\{\left(0;51\right);\left(2;19\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;51\right);\left(1;19\right)\right\}\)
mà x,y là các số tự nhiên khác 0
nên \(\left(x;y\right)=\left(1;19\right)\)
=>\(x\cdot y=1\cdot19=19\) là số nguyên tố
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
Bài 1. Tìm các số thực x thỏa mãn:
a. |3 − |2x − 1|| = x − 1
b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
c. |x − 2| + |x − 3| + ... + |x − 9| = 1 − x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số
chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|
có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn.
Cho số hữu tỷ x thỏa mãn x^2 + 2x là một số nguyên. Chứng minh x là một số nguyên.