Phân tích đa thức thành nhân tử
x^2-xy-x^2+4x+4-y^2
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Bài 1 : Phân tích các đa thức sau thành nhân tử :
1) 15x + 15y 2) 8x - 12y
3) xy - x 4) 4x^2- 6x
Bài 2 : Phân tích các đa thức sau thành nhân tử :
1) 2(x + y) - 5a(x + y) 2) a^2(x - 5) - 3(x - 5)
3) 4x(a - b) + 6xy(a - b) 4) 3x(x - 1) + 5(x -1)
Bài 3 : Tính giá trị của biểu thức :
1) A = 13.87 + 13.12 + 13
2) B = (x - 3).2x + (x - 3).y tại x = 13 và y = 4
Bài 4 : Tìm x :
1) x(x - 5) - 2(x - 5) = 0 2) 3x(x - 4) - x + 4 = 0
3) x(x - 7) - 2(7 - x) = 0 4) 2x(2x + 3) - 2x - 3 = 0
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Bài 1. Phân tích đa thức 2x – 4y thành nhân tử được kết quả là:
A.2(x – 2y) B. 2( x + y) C. 4(2x – y) D. 2(x + 2y)
Bài 2. Phân tích đa thức 4x2 – 4xy thành nhân tử được kết quả là:
A.4(x2 – xy) B. x(4x – 4y) C. 4x(x – y) D. 4xy(x – y)
Bài 3. Tại x = 99 giá trị biểu thức x2 + x là:
A.990 B. 9900 C. 9100 D. 99000
Bài 4. Các giá trị của x thỏa mãn biểu thức x2 – 12x = 0 là:
A.x = 0 B. x = 12 C. x = 0 và x = 12 D. x = 11
Giúp mik với mik cảm ơn
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
phân tích đa thức thành nhân tử
4x^3 - 4.x^2.y^2 + xy^3
Phân tích đa thức thành nhân tử(xy+4)^2 - 4x(x^2+4)
Phân tích đa thức thành nhân tử:
1,x^2-xy-2x+2y
2,x^2+4x+4-y^2
3,x^2+x+y-y^2
4,x^3-x^2-4x+4y
\(1,x^2-xy-2x+2y\)
\(x\left(x-2\right)-y\left(x-2\right)\)
\(\left(x-2\right)\left(x-y\right)\)
\(2,x^2+4x+4-y^2\)
\(\left(x+2\right)^2-y^2\)
\(\left(x+2-y\right)\left(x+2+y\right)\)
\(3,x^2+x+y-y^2\)
\(\left(x-y\right)\left(x+y\right)+\left(x+y\right)\)
\(\left(x+y\right)\left(x-y+1\right)\)
\(4,x^3-x^2-4x+4\)
\(x^2\left(x-1\right)-4\left(x-1\right)\)
\(\left(x-1\right)\left(x^2-4\right)\)
\(\left(x-1\right)\left(x-2\right)\left(x+2\right)\)
Phân tích đa thức thành nhân tử:
a) \(\left(xy\right)^2-xy-2\)
b) \(x^4-8x^3-16x^2+2\left(x^2-4x+4\right)-43\)
Lời giải:
a.
$(xy)^2-xy-2=(x^2y^2+xy)-(2xy+2)$
$=xy(xy+1)-2(xy+1)=(xy+1)(xy-2)$
b. Bạn xem lại đoạn $-16x^2$ là dấu - hay + vậy?
Phân tích đa thức thành nhân tử:
a)xy(x+y)+yz(y+z)+xz(x+z)+2xyz
b)3(x-3)(x+7)+(x-4)^2
c)4x^2-y^2+4x+1
Phân tích đa thức thành nhân tử
a,x^2-y^2-4x+4y
b,(xy+4)^2-4(x+y)^2
c,25-x^2+2xy-y^2
a) x2 - y2 - 4x + 4y
= (x2 - 4x + 4) - (y2 - 4y + 4)
= (x - 2)2 - (y - 2)2
= (x - 2 - y + 2)(x - 2 + y - 2)
= (x - y)(x + y - 4)
b) (xy + 4)2 - 4(x + y)2
= (xy + 4)2 - [2(x + y)]2
= (xy + 4)2 - (2x + 2y)2
= (xy + 4 - 2x - 2y)(xy + 4 + 2x + 2y)
c) 25 - x2 + 2xy - y2
= 25 - (x2 - 2xy + y2)
= 52 - (x - y)2
=> (5 - x + y)(5 + x - y)
a) \(x^2-y^2-4x+4y=\left(x^2-y^2\right)-\left(4x-4y\right)=\left(x+y\right)\left(x-y\right)-4\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-4\right)\)
b) \(\left(xy+4\right)^2-4\left(x+y\right)^2=\left(xy+4\right)^2-\left(2x+2y\right)^2=\left(xy+4+2x+2y\right)\left(xy+4-2x-2y\right)\)
c) \(25-x^2+2xy-y^2=25-\left(x^2-2xy+y^2\right)=5^2-\left(x-y\right)^2=\left(5+x-y\right)\left(5-x+y\right)\)
x2 - y2 - 4x + 4y
= ( x2 - y2 ) - ( 4x - 4y )
= ( x - y )( x + y ) - 4( x - y )
= ( x - y )( x + y - 4 )
( xy + 4 )2 - 4( x + y )2
= ( xy + 4 )2 - 22( x + y )2
= ( xy + 4 )2 - [ 2( x + y ) ]2
= ( xy + 4 )2 - ( 2x + 2y )2
= [ ( xy + 4 ) - ( 2x + 2y ) ][ ( xy + 4 ) + ( 2x + 2y )
= ( xy - 2x - 2y + 4 )( xy + 2x + 2y + 4 )
25 - x2 + 2xy - y2
= 25 - ( x2 - 2xy + y2 )
= 52 - ( x - y )2
= ( 5 - x + y )( 5 + x - y )