cho a+b+c+d=0 chứng minh rằng a^3+b^3+c^3+d^3=3(ac-bd)*(b-d)
Cho b^2 = ac ; c^2 = bd với b, c, d ≠ 0; b+c ≠ 0; b^3+c^3≠ d^3 3. Chứng minh rằng:
a) \(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)
b) \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
Cho a, b, c, d là 4 số khác 0 thỏa mãn \(b^2\) = ac; \(c^2\) = bd và \(b^3+c^3+d^3\ne0\)
Chứng minh rằng: \(\dfrac{a}{d}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
CHo a ,b,c,d Khác 0 thỏa mãn b mũ 2 =ac;c mũ 2 = bd. Chứng Minh rằng a mũ 3 +b mũ 3 +c mũ 3 /b mũ 3+c mũ 3+d mũ 3 =a/d
Cho a, b, c, d là 4 số khác 0 thỏa mãn: \(b^2=ac;c^2=bd\) và \(b^3+c^3+d^3\ne0\)
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
\(\left\{{}\begin{matrix}b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\\c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}\left(1\right)\)
Và \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)
Chứng minh rằng : a+b+c+d=0 thì a3+b3+c3+d3=3(ac-bd)(b+d)
Ta có a + b + c + d = 0
\(\Leftrightarrow\)a+c = -( b+ d)
\(\Leftrightarrow\)(a+c)3 = - ( b+d)3
\(\Leftrightarrow\)a3 + c3 + 3ac.(a+c) = - [ b3 + d3 + 3bd( b+d) ]
\(\Leftrightarrow\)a3 + b3 + c3 + d3 = -3bd(b+d) - 3ac(a+c)
\(\Leftrightarrow\)a3 + b3 + c3 + d3 = -3bd( b+d) + 3ac( b+d)
\(\Leftrightarrow\)a3 + b3 + c3 + d3 = 3( ac - bd)(b +d) (đpcm)
Ta có: a + b + c +d = 0 => a + b + (c+d) = 0
=> a3 + b3 +(c+d)3 = 3ab(c+d)
=>a3 +b3 +c3 +d3 +3cd(c+d) = 3ab(c+d)
=> a3 +b3 +c3 +d3 = 3ab(c+d) – 3cd(c+d) = 3(c+d)(ab – cd).
.Cho a + b + c + d = 0. Chứng minh rằng:
a3 +b3 +c3 +d3 = 3(c + d)(ab – cd) = 3(a + b)(cd – ab) = 3(a + c)(bd – ac).
Câu hỏi của ✰✰ βєsէ ℱƐƝƝIƘ ✰✰ - Toán lớp 8 - Học toán với OnlineMath
Biết: a+b+c+d = 0; (a+c)3 = -(b+d)3
Chứng minh rằng: a3+b3+c3+d3 = 3(b+d)(ac-bd)
Giải:
\(a+b+c+d=0\)
\(\Leftrightarrow a+c=-b-d\)
\(\Leftrightarrow a+c=-\left(b+d\right)\)
Ta có:
\(\left(a+c\right)^3=-\left(b+d\right)^3\)
\(\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-\left(b^3+3b^2d+3bd^2+d^3\right)\)
\(\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-3b^2d-3bd^2-d^3\)
\(\Leftrightarrow a^3+3ac\left(a+c\right)+c^3=-b^3-3cd\left(b+d\right)-d^3\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)-3ac\left(a+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)+3ac\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)
Vậy ...
cho a,b,c,d là 4 số khác 0 thỏa mãn b^2= ac và c^2=bd
chứng minh rằng: a^3+b^3+c^3/b^3+c^3+d^3=a/d
giúp mình với mai đi học rùi!!!
Cho a+b+c+d =0
chứng minh:
a^3+b^3+c^3+d^3 = 3(ac-bd)(b+d)