Cho a, b, c, d là 4 số khác 0 thỏa mãn: \(b^2=ac;c^2=bd\) và \(b^3+c^3+d^3\ne0\)
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) Chứng minh rằng \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
1) So sánh :
a)128 và 812
b) (-5)39 và (-2)91
c) 5020 và 255010
2) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng :
a) \(\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a-b^3}{c-d^3}\)
3) Tìm giá trị lớn nhất , giá trị nhỏ nhất của biểu thức :
d) D=(2x+\(\dfrac{1}{3}\))4 - 1
e) E= \(-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)
f) G=|x-2008|+|x-8|
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) Chứng minh rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
cho hàm số y=2x (1) tìm 3 điểm thuộc đồ thị hàm (1)
Cho \(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{d}\)chứng minh rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)\)^3=\(\dfrac{a}{d}\)
giúp mik đc ko ạ:(((
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) chứng mình rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
Cho a,b,c,d là 4 số khác 0 thoả mãn\(b^2=ac,c^2=bd\) và\(b^3+c^3+d^3\)khác 0. Chứng minh rằng:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}=\frac{a}{d}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)chứng minh rằng :\(\dfrac{a^3+c^3+e^3}{b^3+d^3+f^3}=\dfrac{ace}{bdf}\)
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)chứng minh rằng : \(\dfrac{a^3}{b^3}=\dfrac{a}{d}\)