Tìm m để đồ thị của hàm số \(y=x-m\) đi qua điểm \(M_{\left(\dfrac{1}{3};\dfrac{1}{2}\right)}\)
A. \(\dfrac{1}{6}\)
B. \(-\dfrac{1}{6}\)
C. \(\dfrac{1}{3}\)
D. \(\dfrac{1}{2}\)
Cần cách giải chi tiết và đầy đủ ạ
giúp mk với tối nay phải nộp rồi
1) So sánh :
a)128 và 812
b) (-5)39 và (-2)91
c) 5020 và 255010
2) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng :
a) \(\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a-b^3}{c-d^3}\)
3) Tìm giá trị lớn nhất , giá trị nhỏ nhất của biểu thức :
d) D=(2x+\(\dfrac{1}{3}\))4 - 1
e) E= \(-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)
f) G=|x-2008|+|x-8|
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) Chứng minh rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) chứng mình rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\).
Giải chi tiết dùm mình với ạ.
cho tỷ lệ thức \(\dfrac{a}{b}\)= \(\dfrac{b}{c}\)=\(\dfrac{c}{d}\). Chứng minh \(\dfrac{\left(a+b+c\right)}{\left(b+c+e\right)}^3\)=\(\dfrac{a}{d}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)(b, c, d ≠ 0 , b + d ≠ 0). Chứng minh rằng: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Cho b^2 = ac ; c^2 = bd với b, c, d ≠ 0; b+c ≠ 0; b^3+c^3≠ d^3 3. Chứng minh rằng:
a) \(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)
b) \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
Cho ab = bc = cd . Chứng minh rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)