Ta có:\(a+b+c+d=0\)
\(a+c=-\left(b+d\right)\)
\(\left(a+c\right)^3=-\left(b+d\right)^3\)
\(\Leftrightarrow a^3+c^3+3ac\left(a+c\right)=-\left[b^3+d^3+3bd\left(b+d\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)-3ac\left(a+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)+3ac\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ac-bd\right)\left(b+d\right)\left(đpcm\right)\)
Sửa đề một chút : Cmr a3 + b3 + c3 + d3 = 3 ( ac - bd ) ( b + d )
a + b + c + d = 0
=> a + c = - ( b + d )
\(\Leftrightarrow\left(a+c\right)^3=-\left(b+d\right)^3\)
\(\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-d^3-3b^2d-3bd^2\)
\(\Leftrightarrow a^3+3ac\left(a+c\right)+c^3=-b^3-d^3-3bd\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ac\left(a+c\right)-3bd\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ac-bd\right)\left(b+d\right)\)( đpcm )