Giải giúp mình pt này với ạ: \(\sqrt{4x^2-4x+9}=3.\)
\(x^2+6x-3=4x\sqrt{2x-1}\) Giải pt này ạ
Mình đã làm được theo cách bình phương 2 vế, đặt ẩn phụ, nhân liên hợp. Ngoài 3 cách này ra còn có cách nào khác các bạn làm hộ mình với
điều kiện: \(x\ge\frac{1}{2}\)
ta có \(x^2+8x-4-4x\sqrt{2x-1}=2x-1\)
\(\Leftrightarrow\left(x-2\sqrt{2x-1}\right)^2=2x-1\Leftrightarrow\orbr{\begin{cases}x-2\sqrt{2x-1}=\sqrt{2x-1}\\x-2\sqrt{2x-1}=-\sqrt{2x-1}\end{cases}}\)
\(\) hay \(\orbr{\begin{cases}x=3\sqrt{2x-1}\\x=\sqrt{2x-1}\end{cases}}\)
TH1: \(x=3\sqrt{2x-1}\Leftrightarrow x^2=18x-9\Leftrightarrow x=9\pm6\sqrt{2}\)
TH2: \(x=\sqrt{2x-1}\Leftrightarrow x^2=2x-1\Leftrightarrow x=1\)
( về cơ bản nó không khác cách e đặt ẩn phụ là mấy, chỉ có điều e liên hợp kiểu gì nhỉ)
bằng 1 nha
Giúp mình giải bài này với ạ
rút gọn (2x-3)(4x^2+6x+9)-4x(2x^2-1)
\(\left(2x-3\right)\left(4x^2+6x+9\right)-4x\left(2x^2-1\right)\)
\(=8x^3-27-8x^3+4x\\ =8x^3-8x^3+4x-27\\ =4x-27\)
c) \(2+2\sqrt{3}-\sqrt{6+4\sqrt{2}}\)
d) \(\sqrt{4x^2-12x+9}-2x+1\) với x ≥ \(\dfrac{3}{2}\)
Giải giúp em với ạ :((
\(c,=2+2\sqrt{3}-\left(2+\sqrt{2}\right)=2\sqrt{3}-\sqrt{2}\\ d,=\sqrt{\left(2x-3\right)^2}-2x+1=\left|2x-3\right|-2x+1\\ =2x-3-2x+1=-2\left(x\ge\dfrac{3}{2}\Leftrightarrow2x-3\ge0\right)\)
\(\sqrt[]{x-2}=3\)
\(\sqrt{4x^2}+4x+1=3\)
\(3\sqrt{9x-9}-\sqrt{4x}-4=\sqrt{x-1}+24\)
giúp mk với ạ
\(\sqrt{x-2}=3\left(x\ge2\right)\\ \Leftrightarrow x-2=9\Leftrightarrow x=11\left(tm\right)\\ \sqrt{4x^2}+4x+1=3\Leftrightarrow\left|2x\right|=2-4x\\ \Leftrightarrow\left[{}\begin{matrix}2x=2-4x\left(x\ge0\right)\\2x=4x-2\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{3}\)
Giải pt:
\(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
Em cảm ơn ạ.
\(\Leftrightarrow\sqrt[3]{3x+1}+\sqrt[3]{2x-9}=\sqrt[3]{x-5}+\sqrt[3]{4x-3}\)
Đặt \(\sqrt[3]{3x+1}=a;\sqrt[3]{2x-9}=b;\sqrt[3]{x-5}=c;\sqrt[3]{4x-3}=d\) ta được hệ:
\(\left\{{}\begin{matrix}a+b=c+d\\a^3+b^3=c^3+d^3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=c+d\\\left(a+b\right)^3-3ab\left(a+b\right)=\left(c+d\right)^3-3cd\left(c+d\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a+b=c+d=0\\\left[{}\begin{matrix}a+b=c+d\ne0\\ab=cd\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a^3+b^3=0\\a^3b^3=c^3d^3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-8=0\\\left(3x+1\right)\left(2x-9\right)=\left(4x-3\right)\left(x-5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-8=0\\x^2-x-12=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Giúp mình giải 3 pt này nha:
1. \(x^2-2x=2\sqrt{2x-1}\)
2. \(\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}}\)
3. \(7x^2+7x=\sqrt{\frac{4x+9}{28}}\)
Mình cám ơn rất nhiều
\(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)giải hộ mik pt này
\(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(2\sqrt{x-5}=4\)
\(\sqrt{x-5}=2\)
\(\left\{{}\begin{matrix}2>0\left(luondung\right)\\x-5=4\end{matrix}\right.\)\(\Rightarrow x=9\left(tm\right)\)
GIẢI GIÙM MÌNH HỆ GỒM HAI PT NÀY VỚI
\(y^3+3y^2+y+4x^2-22x+21=\left(2x+1\right)\sqrt{2x-1}\)
\(2x^2-11x+9=2y\)
Giải PT: \(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
Giúp mình vs
Loại bỏ dấu căn bằng cách lũy thừa mỗi vế lên = cơ số của dấu căn.
\(x=\frac{1+i\sqrt{5}}{3};\frac{1-i\sqrt{5}}{3}\)
đk: \(\forall x\inℝ\)
Ta có: \(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=\sqrt{\left(2x-1\right)^2}\)
\(\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=2x-1\\x-1=1-2x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\3x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)
\(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
ĐKXĐ : ∀ x ∈ R
pt <=> \(\sqrt{\left(x-1\right)^2}=\sqrt{\left(2x-1\right)^2}\)
<=> \(\left|x-1\right|=\left|2x-1\right|\)
<=> \(\orbr{\begin{cases}x-1=2x-1\\x-1=-\left(2x-1\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x-1=2x-1\\x-1=1-2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2x=-1+1\\x+2x=1+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=0\\3x=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)