Ko dùng máy tính hãy so sánh 72019 - 72020 và 72018 - 72019
1) B= 1+3+32+...+31999+32000
2) C= 1+4+42+...+499+4100
3) D= 72+73+74+...+72019+72020
Tính các tổng hộ mình nhé.
\(1)B=1+3+3^2+...+3^{1999}+3^{2000}\\3B=3+3^2+3^3+...+3^{2000}+3^{2001}\\3B-B=3+3^2+3^3+...+3^{2000}+3^{2001}-(1+3+3^2+...+3^{1999}+3^{2000})\\2B=3^{2001}-1\\\Rightarrow B=\dfrac{3^{2001}-1}{2}\\---\)
\(2)C=1+4+4^2+...+4^{99}+4^{100}\\4C=4+4^2+4^3+...+4^{100}+4^{101}\\4C-C=4+4^2+4^3+...+4^{100}+4^{101}-(1+4+4^2+....+4^{99}+4^{100})\\3C=4^{101}-1\\\Rightarrow C=\dfrac{4^{101}-1}{3}\)
#\(Toru\)
1) \(B=1+3+3^2+...+3^{1999}+3^{2000}\)
\(3B=3\cdot\left(1+3+3^2+...+3^{2000}\right)\)
\(3B=3+3^2+...+3^{2001}\)
\(3B-B=3+3^2+3^3+...+3^{2001}-1-3-3^2-...-3^{2000}\)
\(2B=3^{2001}-1\)
\(B=\dfrac{3^{2001}-1}{2}\)
2) \(C=1+4+4^2+...+4^{100}\)
\(4C=4\cdot\left(1+4+4^2+...+4^{100}\right)\)
\(4C=4+4^2+4^3+...+4^{101}\)
\(4C-C=4+4^2+4^3+...+4^{201}-1-4-4^2-....-4^{100}\)
\(3C=4^{101}-1\)
\(C=\dfrac{4^{101}-1}{3}\)
Mình cho bạn công thức tổng quát để sau này tiện áp dụng nhé:
\(A=1+a^1+a^2+...+a^n\)
\(\Rightarrow A=\dfrac{a^{n+1}-1}{a-1}\)
Ko dùng máy tính hãy so sánh
A.5 và √29
B.3√2 và 2√3
A. ta có \(5=\sqrt{25}\)
vì \(\sqrt{25}< \sqrt{29}\)
suy ra \(5< \sqrt{29}\)
k cho mk nha
5=\(\sqrt{25}\)<\(\sqrt{29}\)(do 25<29)
\(3\sqrt{2}\)=\(\sqrt{18}\);\(2\sqrt{3}\)=\(\sqrt{12}\)
Nhu vay \(3\sqrt{2}\)>\(2\sqrt{3}\)
Ko dùng máy tính hãy so sánh
\(\sqrt{35}+\sqrt{99}\)Và 16
\(\sqrt{35}+\sqrt{99}< \sqrt{36}+\sqrt{100}=6+10=16\)
Vậy \(\sqrt{35}+\sqrt{99}< 16\)
ko dùng máy tính hãy so sánh A=5^2020+1/5^2021+1 và B=10^2019+1/10^2020+1
A = \(\dfrac{5^{2020}+1}{5^{2021}+1}\) ⇒ A \(\times\) 10 = 2 \(\times\)5 \(\times\) \(\dfrac{5^{2020}+1}{5^{2021}+1}\) =2\(\times\) \(\dfrac{5^{2021}+5}{5^{2021}+1}\)
10A =2 \(\times\) \(\dfrac{5^{2021}+5}{5^{2021}+1}\) = 2 \(\times\)(1 + \(\dfrac{4}{5^{2021}+1}\) )= 2 + \(\dfrac{8}{5^{2021}+1}\) >2
B = \(\dfrac{10^{2019}+1}{10^{2020}+1}\) ⇒ B \(\times\) 10 = 10 \(\times\) \(\dfrac{10^{2019}+1}{10^{2020}+1}\)= \(\dfrac{10^{2020}+10}{10^{2020}+1}\)
10B = \(\dfrac{10^{2020}+10}{10^{2020}+1}\) = 1 + \(\dfrac{9}{10^{2020}+1}\) < 2
10A > 2 > 10B ⇒ 10A>10B ⇒ A>B
ko dùng máy tính hãy so sánh \(\sqrt{3}+\sqrt{8}+\sqrt{24}\)và 10
theo ket qua cho thay:9.4594<10
Ta có :
\(\sqrt{3}< \sqrt{4}=2\)
\(\sqrt{8}< \sqrt{9}=3\)
\(\sqrt{24}< \sqrt{25}=5\)
\(\Rightarrow\sqrt{3}+\sqrt{8}+\sqrt{24}< 2+3+5=10\)(đpcm)
Vậy ...
\(\sqrt{3}+\sqrt{8}+\sqrt{24}< \sqrt{4}+\sqrt{9}+\sqrt{25}\)
\(=2+3+5=10\)
Vậy: \(\sqrt{3}+\sqrt{8}+\sqrt{24}< 10\)
ko dùng máy tính hãy so sánh :
\(\sqrt{27}-\sqrt{12}-\sqrt{2016}và-44\)
\(\sqrt{27}-\sqrt{12}-\sqrt{2016}>\sqrt{25}-\sqrt{16}-\sqrt{2025}\)
\(=5-4-45=-44\)
Vậy \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)
Có : \(\sqrt{12}< \sqrt{16}=4\)
\(\sqrt{2016}< \sqrt{2025}\) => \(\sqrt{12}+\sqrt{2016}< 4+45\)
=> \(-\sqrt{12}-\sqrt{2016}>-49\)(1)
Lại có : \(\sqrt{27}>\sqrt{25}=5\)(2)
Từ (1),(2) có : \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>5-49\)or \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)
Em hãy so sánh: (ko dùng máy tính)
a. 7 mũ 80 và 8 mũ 70
b. 2 mũ 332 và 3 mũ 223
chơi nhau à
Toán 6:
Không dùng máy tính hãy so sánh A= 5^2020+1/5^2021+1
và B=10^2019+1/10^2020+1
help mik dc ko ;-;
ta có :
A = \(\dfrac{5^{2020}+1}{5^{2020}+1}\)
B = \(\dfrac{5^{2019}+1}{5^{2020}+1}\)
\(\Leftrightarrow\) B < A
Ko dùng máy tính hãy so sánh 2016/2017+2017/2018+2018/2019+2019/2016 với 4