Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD, kẻ DE vuông góc BC
a) Chứng minh rằng: BD là trung trực của AE và AD<DC.
b) Tia ED cắt BA tại F. Chứng minh BD vuông góc CF và AE song song CF
c) Tia BD cắt CF tại G. chứng minh rằng D cách đều ba cạnh của tam giác AEG
d) lấy M và N tương ứng di động trên BF và bc sao cho BM + BN = BC. Chứng minh rằng trung điểm I của MN luôn nằm trên một đường thẳng cố định