Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hai Hien
Xem chi tiết
Lê Mai Tuyết Hoa
Xem chi tiết
Trần Tuấn Hoàng
4 tháng 3 2022 lúc 19:40

a) -Qua B kẻ đường thẳng vuông góc với DC tại E.

-Xét tứ giác ABED: \(\widehat{ADE}=\widehat{BAD}=\widehat{DEB}=90^0\)

\(\Rightarrow\)ABED là hình chữ nhật nên \(AD=BE\)\(AB=ED=4\left(cm\right)\)

-Xét △BEC vuông tại E:

\(BE^2+EC^2=BC^2\) (định lí Py-ta-go)

\(\Rightarrow BE^2+\left(DC-DE\right)^2=BC^2\)

\(\Rightarrow BE^2+\left(9-4\right)^2=13^2\)

\(\Rightarrow BE^2=13^2-5^2=144\)

\(\Rightarrow BE=AD=12\left(cm\right)\)

b) \(S_{ABCD}=\dfrac{AD.\left(AB+CD\right)}{2}=\dfrac{12.\left(4+9\right)}{2}=78\left(cm^2\right)\)

c) -Đề sai.

Ngân Nguyễn Khánh
Xem chi tiết
Cô Hoàng Huyền
21 tháng 5 2018 lúc 11:25

Xét tam giác ABD và tam giác BDC có:

\(\widehat{BAD}=\widehat{DBC}=90^o\)

\(\widehat{ABD}=\widehat{BDC}\)   (Cùng phụ với góc \(\widehat{ADC}\)  )

\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow BD^2=\frac{AB}{DC}\)

Xét tam giác vuông ABD, áp dụng định lý Pi-ta-go ta có:

      \(DB^2=AB^2+AD^2=2^2+4^2=20\)

Suy ra \(2=\frac{20}{DC}\Rightarrow DC=10cm\)

Xét tam giác vuông BDC, áp dụng định lý Pi-ta-go ta có:

  \(BC^2=DC^2-BD^2=10^2-20=80\Rightarrow BC=\sqrt{80}\left(cm\right)\)

Vậy chu vi hình thang vuông bằng:    2 + 4 + 10 + \(\sqrt{80}=14+\sqrt{80}\left(cm\right)\)

Diện tích hình thang bằng: \(\frac{\left(2+10\right).4}{2}=24\left(cm^2\right)\)

Bich Ngoc Nguyen thi
21 tháng 5 2018 lúc 12:16

20cm2

Nguyễn Thị Ngọc Lan
Xem chi tiết
Giúp mik với mấy bn ơi C...
Xem chi tiết
Lê Hồng Anh Thư
Xem chi tiết
Hoàng Nữ Linh Đan
6 tháng 8 2018 lúc 14:29

Bạn tự vẽ hình nha:

Từ B kẻ đường thẳng vuông góc với DC cắt DC tại E 

=> ABED là HCN vì có ba góc vuông 

=> góc ABE = 90 độ

=> góc EBC= góc ABE - góc ABC = 90 - 50=30

Tam giác BCE có: góc BCE = 180 - góc CBE - góc BEC = 180-30 -90=60

=> góc BCD = 120 ( kề vs góc BCE)

Trần Đăng Khang
Xem chi tiết
NGUYỄN thùy trang
Xem chi tiết
Quynh Existn
Xem chi tiết
Cao Thanh Nga
Xem chi tiết
Pham Van Hung
31 tháng 7 2018 lúc 14:20

a, Bạn chứng minh được \(\Delta ABD\infty\Delta BDC\left(g.g\right)\)

\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow AB.DC=BD^2\Rightarrow2.8=BD^2\Rightarrow BD^2=16\Rightarrow BD=4\left(cm\right)\)(vì AB = 2cm , CD = 8 cm)

Ta có: \(\frac{BD}{CD}=\frac{4}{8}=\frac{1}{2}\)

Xét tam giác BDC vuông tại B có: BD = 1/2 CD nên \(\widehat{C}=30^0\)

ABCD là hình thang vuông(gt) \(\Rightarrow AB//CD\)

 \(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\) ( 2 góc trong cùng phía)

\(\Rightarrow\widehat{ABC}+30^0=180^0\) (do góc C = 30 độ)

\(\Rightarrow\widehat{ABC}=150^0\)

b, Áp dụng định lí Pitago vào tam giác ABD vuông tại A, tính được: \(AD=\sqrt{12}\left(cm\right)\)

Diện tích hình thang ABCD là: 

                         \(\frac{\left(2+8\right).\sqrt{12}}{2}=5\sqrt{12}\left(cm^2\right)\) 

Chúc bạn học tốt.

Bùi Xuân Nam
1 tháng 5 2020 lúc 8:17

thang cho dung hoi nua

Khách vãng lai đã xóa