Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Giga Wizz
Xem chi tiết
Tuấn Nguyễn
Xem chi tiết
 ๖ۣۜFunny-Ngốkツ
26 tháng 2 2018 lúc 17:16

\(\frac{2x-3}{\left(7-6x\right)^2}+\frac{x-2}{\left(7-6x\right)^2}=\frac{6x-3}{\left(3x-5\right)^2}-\frac{12x-10}{\left(3x-5\right)^2}\)

\(\Leftrightarrow\frac{2x-3+x-2}{\left(7-6x\right)^2}=\frac{6x-3-12x+10}{\left(3x-5\right)^2}\)

\(\Leftrightarrow\frac{3x-5}{\left(7-6x\right)^2}=\frac{7-6x}{\left(3x-5\right)^2}\)

\(\Leftrightarrow\left(7-6x\right)^3=\left(3x-5\right)^3\)

\(\Leftrightarrow7-6x=3x-5\)

\(\Leftrightarrow7+5=3x+6x\)

\(\Leftrightarrow12=9x\)

\(\Leftrightarrow x=\frac{4}{3}\)

Vậy \(x=\frac{4}{3}\)

Mộc Miên
Xem chi tiết
Thiện Nguyễn
25 tháng 3 2020 lúc 9:56
https://i.imgur.com/NOxfqjV.jpg
Khách vãng lai đã xóa
Thiện Nguyễn
25 tháng 3 2020 lúc 9:54
https://i.imgur.com/awOKwJi.jpg
Khách vãng lai đã xóa
Thiện Nguyễn
25 tháng 3 2020 lúc 9:55
https://i.imgur.com/a0ApmAE.jpg
Khách vãng lai đã xóa
Nguyễn Châu Mỹ Linh
Xem chi tiết
B.Thị Anh Thơ
8 tháng 1 2020 lúc 18:02

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

Khách vãng lai đã xóa
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
19 tháng 9 2023 lúc 20:27

\(\begin{array}{l}a)\left[ {{{\left( {\dfrac{3}{7}} \right)}^4}.{{\left( {\dfrac{3}{7}} \right)}^5}} \right]:{\left( {\dfrac{3}{7}} \right)^7}\\ = {\left( {\dfrac{3}{7}} \right)^{4 + 5}}:{\left( {\dfrac{3}{7}} \right)^7}\\ = {\left( {\dfrac{3}{7}} \right)^9}:{\left( {\dfrac{3}{7}} \right)^7}\\ = {\left( {\dfrac{3}{7}} \right)^{9-7}}\\= {\left( {\dfrac{3}{7}} \right)^2}\\b)\left[ {{{\left( {\dfrac{7}{8}} \right)}^5}:{{\left( {\dfrac{7}{8}} \right)}^4}} \right].\left( {\dfrac{7}{8}} \right)\\ = {\left( {\dfrac{7}{8}} \right)^{5 - 4}}.\left( {\dfrac{7}{8}} \right)\\ = \left( {\dfrac{7}{8}} \right).\left( {\dfrac{7}{8}} \right)\\ = {\left( {\dfrac{7}{8}} \right)^2}\\c)\left[ {{{\left( {0,6} \right)}^3}.{{\left( {0,6} \right)}^8}} \right]:\left[ {{{\left( {0,6} \right)}^7}.{{\left( {0,6} \right)}^2}} \right]\\ = {\left( {0,6} \right)^{3 + 8}}:{\left( {0,6} \right)^{7 + 2}}\\ = {\left( {0,6} \right)^{11}}:{\left( {0,6} \right)^9}\\ = {\left( {0,6} \right)^{11-9}}\\={\left( {0,6} \right)^2}.\end{array}\)

Thảo Nguyễn
Xem chi tiết
soyeon_Tiểubàng giải
31 tháng 10 2016 lúc 13:18

a) Để A lớn nhất thì \(\frac{15}{4.\left|3x+7\right|+3}\) lớn nhất hay 4.|3x + 7| + 3 nhỏ nhất

Có: \(4.\left|3x+7\right|+3\ge3\forall x\)

Dấu "=" xảy ra khi |3x + 7| = 0

=> 3x + 7 = 0

=> 3x = -7

\(\Rightarrow x=\frac{-7}{3}\)

Với x = \(\frac{-7}{3}\) thay vào đề bài ta được A = 10

Vậy \(A_{Max}=10\) khi x = \(\frac{-7}{3}\)

b) Để B lớn nhất thì \(\frac{21}{8.\left|15x-21\right|+7}\) lớn nhất hay 8.|15x - 21| + 7 nhỏ nhất

Có: \(8.\left|15x-21\right|+7\ge7\forall x\)

Dấu "=" xảy ra khi |15x - 21| = 0

=> 15x - 21 = 0

=> 15x = 21

\(\Rightarrow x=\frac{21}{15}=\frac{7}{5}\)

Với \(x=\frac{7}{5}\) thay vảo đề bài ta tìm được B = \(\frac{8}{3}\)

Vậy \(B_{Max}=\frac{8}{3}\) khi x = \(\frac{7}{5}\)

c) Có: \(\begin{cases}\left|x+1\right|\ge x+1\\\left|3x-4\right|\ge4-3x\\\left|2x-1\right|\ge2x-1\end{cases}\)\(\forall x\)

\(\Rightarrow C\ge\left(x+1\right)+\left(4-3x\right)+\left(2x-1\right)+5\)

hay \(C\ge9\)

Dấu "=" xảy ra khi \(\begin{cases}x+1\ge0\\3x-4\le0\\2x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\3x\le4\\2x\ge1\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\x\le\frac{3}{4}\\x\ge\frac{1}{2}\end{cases}\)\(\Rightarrow\frac{1}{2}\le x\le\frac{3}{4}\)

Vậy \(C_{Max}=9\) khi \(\frac{1}{2}\le x\le\frac{3}{4}\)

Thỏ xu xu
Xem chi tiết
Trieu van
Xem chi tiết
Lily
9 tháng 8 2019 lúc 14:42

Vì bài dài quá nên mình làm một bài rồi bạn tự làm như vậy nha !  Vì đề này cũng tương tự nhau cả nha bạn !

Nhưng mình không chắc lắm ! Bài này rối quá !

 \(\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\)

Biểu thức trên đạt GTLN khi \(\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\) đạt GTLN

                                        \(\Leftrightarrow\text{ }\left|3x+5\right|+\left|4y+5\right|+8\) nhỏ nhất

                                         \(\Rightarrow\text{ }\left|3x+5\right|+\left|4y+5\right|\) phải nhỏ nhất vì \(\text{ }\left|3x+5\right|\ge0\text{ và }\left|4y+5\right|\ge0\) nên khi cộng với 8 mới có GTNN

Ta có : \(\left|3x+5\right|\ge3x+5\) . Dấu " = " xảy ra khi \(3x+5\ge0\)  \(\Rightarrow\text{ }3x\ge-5\) \(\Rightarrow\text{ }x\ge-\frac{5}{3}\)

             \(\left|4y+5\right|\ge4y+5\).. Dấu " = " xảy ra khi \(4y+5\ge0\)   \(\Rightarrow\text{ }4y\ge-5\)  \(\Rightarrow\text{ }y\ge-\frac{5}{4}\)

Mà \(\left|3x+5\right|+\left|4y+5\right|\) nhỏ nhất \(\Rightarrow\text{ }x,y\text{ nhỏ nhất }\) 

Vậy \(x=-\frac{5}{3}\) , \(y=-\frac{5}{4}\)

\(\Rightarrow\text{ }\left|3x+5\right|+\left|4y+5\right|\ge\left(3x+5\right)+\left(4y+5\right)\)

\(\left|3x+5\right|+\left|4y+5\right|\ge\left(3x+4y\right)+10\)

Thay \(x=-\frac{5}{3}\) , \(y=-\frac{5}{4}\) vào vế phải của biểu thức ta được :

\(\left|3x+5\right|+\left|4y+5\right|\ge\left(3\cdot\frac{-5}{3}+4\cdot\frac{-5}{4}\right)+10\)

\(\left|3x+5\right|+\left|4y+5\right|\ge\left(-5+\left(-5\right)\right)+10\)

\(\left|3x+5\right|+\left|4y+5\right|\ge0\)

Vậy min \(\left|3x+5\right|+\left|4y+5\right|=0\)

\(\Rightarrow\text{ min }\left|3x+5\right|+\left|4y+5\right|+8=8\)

\(\Rightarrow\text{ }\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\le\frac{4}{5}+\frac{20}{8}=\frac{33}{10}\)

\(\Rightarrow\text{ Max }\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}=\frac{33}{10}\)

Kiệt Nguyễn
9 tháng 8 2019 lúc 14:07

Làm mẫu

a) Ta có: \(\left|3x+7\right|\ge0\)

\(\Leftrightarrow4\left|3x+7\right|\ge0\)

\(\Leftrightarrow4\left|3x+7\right|+3\ge3\)

\(\Leftrightarrow\frac{15}{4\left|3x+7\right|+3}\le5\)

\(\Leftrightarrow5+\frac{15}{4\left|3x+7\right|+3}\le10\)

Vậy GTLN của bt là 10\(\Leftrightarrow x=\frac{-7}{3}\)

pham thi hoa
Xem chi tiết