Chứng minh rằng: (n^2 + 12n + 27) chia hết cho 8 với mọi n là số tự nhiên lẻ
Chứng tỏ rằng với mọi n là số tự nhiên :
a, 3n^2 + n chia hết cho 2
b, 4n^2 + 12n + 10 không chia hết cho 8
AI LÀM ĐC MÌNH K 3 CÁI LUN !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1) chứng minh rằng số A=\(10^n+18n-1\) chia hết cho 27 (n là số tự nhiên)
2) chứng tỏ rằng với mọi số tự nhiên n thì phân số \(\frac{16n+3}{12n+2}\) tối giản
1.
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
đúng cái nhe bạn
2.
Gọi d là ƯCLN (16n+3; 12n+2)
=> 16n+3 chia hết cho d; 12n+2 chia hết cho d
Nên 3. (16n+3) chia hết cho d; 4. (12n+2) chia hết cho d
=> 48n+9 chia hết cho d; 48n+8 chia hết cho d
=> (48n+9)-(48n+8) chia hết cho d
=> 1 chia hết cho d
=> d \(\in\) {1; -1}
Vậy phân số \(\frac{16n+3}{12n+2}\) là phân số tối giản.
1.
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27
2.
Gọi d là ƯCLN (16n+3; 12n+2)
=> 16n+3 chia hết cho d; 12n+2 chia hết cho d
Nên 3. (16n+3) chia hết cho d; 4. (12n+2) chia hết cho d
=> 48n+9 chia hết cho d; 48n+8 chia hết cho d
=> (48n+9)-(48n+8) chia hết cho d
=> 1 chia hết cho d
=> d ∈ {1; -1} => ĐPCM
Chứng minh rằng với mọi số tự nhiên lẻ n:
1. n2 + 4n + 8 chia hết cho 8
2. n3 + 3n2 - n - 3 chia hết cho 48
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
Chứng minh (n^2+1) chia hết cho 8 với n là mọi số tự nhiên lẻ
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
8. Tìm tất cả các số tự nhiên n để :
n4+ 4 là số nguyên tố
n1994+ n1993+ 1 là số nguyên tố
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
phân tích n^2+4n+8=(n+1)(n+3)
vì là số tự nhiên lẻ nên đặt n=2k+1(k thuộc N)
=>n^2+4n+8=(n+1)(n+3)=(2k+2)(2k+4)
=4.(k+1)(k+2)
(k+1)(k+2) là tích 2 số tự nhiên liên tiếp chia hết cho 2
=>4.(k+1)(k+2)\(⋮\)8
1)chứng minh rằng \(n^2+12n+27⋮8\)với n là số tự nhiên lẻ
2) chứng minh rằng C= \(1+2^1+2^2+2^3+...+2^{2011}⋮15\)
chứng minh với mọi số tự nhiên n, nếu n là số lẻ thì n^2 -1 chia hết cho 8
Vì n là số lẽ nên ta có : \(n=2k+1\left(k\in N\right)\). Thay vào :
\(\left(2k+1\right)^2-1=4k^2+4k+1-1=4k^2+4k=4k\left(k+1\right)\)
4 chia hết cho 4 ; \(k\left(k+1\right)\)là 2 số tự nhiên liên tiếp nên chia hết cho 2 \(\Rightarrow\left(2k+1\right)^2-1\) chia hết cho 8 (vì 4.2=8).
Vậy với mọi số tự nhiên n, nếu n là số lẽ thì \(n^2-1\) chia hết cho 8.
Câu 1
a) Chứng minh rằng: Với mọi số tự nhiên n lẻ:(n^2+8*n+15) chia hết cho 8
b) Tìm các số nguyên n sao cho: (n^2+1)chia hết cho (n+1)
a/ \(n=2m+1\)
\(\Rightarrow\left[\left(2m+1\right)^2+8\left(2m+1\right)+15\right]=4\left(m+2\right)\left(m+3\right)⋮8\)
b/ \(\frac{n^2+1}{n+1}=n-1+\frac{2}{n+1}\)
Để nó chia hết thi n + 1 là ước nguyên của 2
\(\Rightarrow\left(n+1\right)=\left(-2;-1;1;2\right)\)
\(\Rightarrow n=\left(-3,-2,0,1\right)\)