Do n lẻ, đặt \(n=2k+1\) với k tự nhiên
\(A=\left(2k+1\right)^2+12\left(2k+1\right)+27=4k^2+28k+40\)
\(=4k\left(k+7\right)+40\)
Do \(k\) và \(k+7\) luôn khác tính chẵn lẻ \(\Rightarrow k\left(k+7\right)⋮2\)
\(\Rightarrow4k\left(k+7\right)⋮8\Rightarrow A⋮8\) với mọi n lẻ