25x^2 - 2xy + 1/25y^2 tại x = -1/5 và y = -5
tính giá trị biểu thức
a) A= (3x+5)(2x-1) +(4x-1)(3x+2) với |x|=2
b) B= 9x^2 +42x +49 với x=1
c) C= 25x^2 -2xy +1/25y^2 với x=-1/5, y=-5
a) \(\left|x\right|=2\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
+) TH1: \(x=2\)
\(A=\left(3\cdot2+5\right)\left(2\cdot2-1\right)+\left(4\cdot2-1\right)\left(3\cdot2+2\right)\)
\(A=89\)
+) TH2: \(x=-2\)
\(A=\left(-2\cdot3+5\right)\left(-2\cdot2-1\right)+\left(-2\cdot4-1\right)\left(-2\cdot3+2\right)\)
\(A=-27\)
Vậy...
b) \(B=9x^2+42x+49\)
\(B=\left(3x+7\right)^2\)
\(B=\left(3\cdot1+7\right)^2\)
\(B=100\)
Vậy...
c) \(C=25x^2-2xy+\frac{1}{25}y^2\)
\(C=\left(5x-\frac{1}{5}y\right)^2\)
\(C=\left(\frac{-1}{5}\cdot5-\frac{1}{5}\cdot\left(-5\right)\right)^2\)
\(C=0\)
Vậy...
tính giá trị biểu thức
a) A= (3x+5)(2x-1) +(4x-1)(3x+2) với |x|=2
b) B= 9x^2 +42x +49 với x=1
c) C= 25x^2 -2xy +1/25y^2 với x=-1/5, y=-5
b) \(B=9x^2+42x+49\)
Thay \(x=1\) vào biểu thức B, ta được:
\(B=9.1^2+42.1+49\)
\(B=9+42+49\)
\(B=51+49\)
\(B=100\)
Vậy giá trị của biểu thức B tại \(x=1\) là \(100.\)
Chúc bạn học tốt!
Giusp mik nha
1/ Tính giá trị biểu thức
a/ A= 9x2 + 42x + 49 với x = 1
b/ B = 25x2 - 2xy + 1/ 25y2 với x = -1/5 và y = -5
thanks
a) \(A=9x^2+42x+49\) tại 1, ta có:
\(\Rightarrow A=9.1^2+42.1+49\)
\(\Rightarrow A=100\)
b) \(B=25x^2-2xy+\frac{1}{25y^2}\) tại \(x=\frac{-1}{5};y=-5\)
\(\Rightarrow B=25.\frac{1}{5^2}-2.\left(\frac{-1}{5}\right).\left(-5\right)+\frac{1}{25.5^2}\)
\(\Rightarrow B=\frac{-624}{625}\)
Bài toán 4: Rút gọn rồi tính giá trị biểu thức
3. 4x2 - 28x + 49 với x = 4
5. 9x2 + 42x + 49 với x = 1
6. 25x2 - 2xy + 1/25y2 với x = -1/5 , y = -5
\(4x^2-28x+49=\left(2x\right)^2-2\cdot2x\cdot7+7^2=\left(2x-7\right)^2\)
thay x=4 vào ta được \(\left(2\cdot4-7\right)^2=\left(8-7\right)^2=1^2=1\)
vậy \(4x^2-28x+49=1\)khi x=4
\(9x^2+42x+49=\left(3x\right)^2+2\cdot3x\cdot7+7^2=\left(3x+7\right)^2\)
thay x=1 và ta được \(\left(3\cdot1+7\right)^2=10^2=100\)
vậy \(9x^2+42x+49=100\)đạt được khi x=1
\(25x^2-2xy+\frac{1}{25y^2}=\left(5x\right)^2-2\cdot5x\cdot\frac{1}{5y}+\left(\frac{1}{5y}\right)^2=\left(5x-\frac{1}{5y}\right)^2\)
thay x=\(\frac{-1}{5}\)và y=-5 vào ta được \(\left[5\cdot\left(\frac{-1}{5}\right)-\frac{1}{5\cdot\left(-5\right)}\right]^2=\left(1-\frac{1}{-25}\right)^2=\left(\frac{26}{25}\right)^2=...\)
vậy \(25x^2-2xy+\frac{1}{25y^2}=\left(\frac{26}{25}\right)^2\)khi x=\(\frac{-1}{5}\)và y=-5
4x2 - 28x + 49 = ( 2x )2 - 2.2x.7 + 72 = ( 2x - 7 )2
Thế x = 4 ta được : ( 2 . 4 - 7 )2 = 12 = 1
9x2 + 42x + 49 = ( 3x )2 + 2.3x.7 + 72 = ( 3x + 7 )2
Thế x = 1 ta được : ( 3.1 + 7 )2 = 102 = 100
25x2 - 2xy + 1/25y2 = ( 5x )2 - 2.5x.1/5y + ( 1/5y )2 = ( 5x - 1/5y )2
Thế x = -1/5 , y = -5 ta được : \(\left[5\cdot\left(-\frac{1}{5}\right)-\frac{1}{5}\cdot\left(-5\right)\right]^2=\left[-1+1\right]^2=0\)
Bài 1: Tính
a, (3x + 2)^2
b, (6a^2 - b)^2
c, (4x - 1)(4x + 1)
d, (1 - x)(1 + x)(1 + x^2)
e, (a^2 + b^2)(a^2 - b^2)
f, (x^3 + y^2)(x^3 - y^2)
Bài 2: Tính giá trị biểu thức
a, A= 9x^2 + 42x + 49 với x = 1
b, B= 25x^2 - 2xy + 1/25y^2 với x = -1/5 ; y = -5
c, C= 4x^2 - 28x + 49 với x = 4
Bài 3: Tìm x biết
a, (x - 3)^2 - 4 = 0
b, x^2 - 2x = 24
Câu 1 :
\(a,\left(3x+2\right)^2=9x^2+12x+4.\)
\(b,\left(6a^2-b\right)^2=36a^4-12a^2b-b^2\)
\(c,\left(4x-1\right)\left(4x+1\right)=16x^2-1\)
\(d,\left(1-x\right)\left(1+x\right)\left(1+x^2\right)=\left(1-x^2\right)\left(1+x^2\right)=1-x^4\)
\(e,\left(a^2+b^2\right)\left(a^2-b^2\right)=a^4-b^4\)
\(f,\left(x^3+y^2\right)\left(x^3-y^2\right)=x^6-y^4\)
Bài 2 :
\(a,A=9x^2+42x+49=9+42+49=100.\)
\(b,B=25x^2-2xy+\frac{1}{25}y^2=\left(5x^2\right)-2.5x.\frac{1}{5}y+\left(\frac{1}{5}y\right)^2\)
\(=\left(5x-\frac{1}{5}y\right)^2=\left(-1+1\right)^2=0\)
\(c,C=4x^2-28x+49=4x^2-14x-14x+49\)
\(=2x\left(x-7\right)-7\left(x-7\right)=\left(2x-7\right)\left(x-7\right)\)
\(=\left(8-7\right)\left(4-7\right)=-3\)
Bài 3 :
\(a,\left(x-3\right)^2-4=0\)
\(\Rightarrow\left(x-3+2\right)\left(x-3-2\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-5\right)=0\)
\(\Rightarrow x\in\left\{1;5\right\}\)
\(b,x^2-2x=24\)
\(\Rightarrow x^2-2x-24=0\)
\(\Rightarrow x^2+4x-6x-24=0\)
\(\Rightarrow x\left(x+4\right)-6\left(x+4\right)=0\)
\(\Rightarrow\left(x+4\right)\left(x-6\right)=0\)
\(\Rightarrow x\in\left\{-4;6\right\}\)
Câu 1: Tính giá trị của biểu thức sau:
a) B=9x^2+42x+4y tại x=1
b) C=25x^2-2xy+1/25y^2 tại x =-1/2;y=-5
Câu 2: Cho tam giác ABC cân tại A, trên các cạnh AB, AC lấy các điểm M,N sao cho BM=CN
a) Tứ giác BMNC là hình gì, vì sao?
b) Tính các góc của tứ giác BMNC biết góc A=40°
Câu 1:
b) Ta có: \(C=25x^2-2xy+\frac{1}{25}y^2\)
\(=\left(5x\right)^2-2\cdot5x\cdot\frac{1}{5}y+\left(\frac{1}{5}y\right)^2\)
\(=\left(5x-\frac{1}{5}y\right)^2\)
Thay \(x=-\frac{1}{2}\) và y=-5 vào biểu thức \(C=\left(5x-\frac{1}{5}y\right)^2\), ta được:
\(C=\left[5\cdot\left(\frac{-1}{2}\right)-\frac{1}{5}\cdot\left(-5\right)\right]^2\)
\(=\left(-\frac{5}{2}+1\right)^2\)
\(=\left(\frac{-5}{2}+\frac{2}{2}\right)^2\)
\(=\left(-\frac{3}{2}\right)^2\)
\(=\frac{9}{4}\)
Vậy: Khi \(x=-\frac{1}{2}\) và y=-5 thì \(C=\frac{9}{4}\)
Câu 2:
a) Ta có: AM+MB=AB(M nằm giữa A và B)
AN+NC=AC(N nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và MB=NC(gt)
nên AM=AN
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{AMN}=\frac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Xét tứ giác BMNC có MN//BC(cmt)
nên BMNC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)
Hình thang BMNC(MN//BC) có \(\widehat{B}=\widehat{C}\)(hai góc ở đáy trong ΔABC cân tại A)
nên BMNC là hình thang cân có hai đáy là MN và BC(Định nghĩa hình thang cân)
b) Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{A}}{2}\)(Số đo của các góc ở đáy trong ΔABC cân tại A)
hay \(\widehat{ABC}=\widehat{ACB}=\frac{180^0-40^0}{2}=\frac{140^0}{2}=70^0\)
Ta có: MN//BC(cmt)
⇒\(\left\{{}\begin{matrix}\widehat{B}+\widehat{BMN}=180^0\\\widehat{C}+\widehat{CNM}=180^0\end{matrix}\right.\)(Các cặp góc trong cùng phía bù nhau)
⇒\(\left\{{}\begin{matrix}\widehat{BMN}=180^0-\widehat{B}=180^0-70^0=110^0\\\widehat{CNM}=180^0-\widehat{C}=180^0-70^0=110^0\end{matrix}\right.\)
Trừ phân thức:
a) x^2+y^2/(x-y)^3 - 2xy/(x-y)^3.
b) x^2+25y^2/x^2-25y^2 - 10xy/x^2-25y^2.
c)3x/5x+5y - x/10x-10y.
d) 1/x-3 - 3/2x+6 - x/2x^2-12x+18.
e) (x^2-1) - x^4-3x^2-4/x^2+1.
f) 1/3x-2 - 4/3x+2 - 3x-6/4-9x^2.
g) 4x^2-3x+5/x^3-1 - 1-2x/x^2+x+1 - 6/x-1.
h) 5/x+1 - 10/x-x^2-1 - 15/x^3+1.
i) 2/2x+1 - 1/2x-1 - 2/4x^2-1.
bn nên vt thành phân thức thì mọi người sẽ dễ nhìn và sẽ giải giúp bn!!!
pttnt a 25x^2-y^2+4y-4
b a^2+b^2-x^2-y^2+2ab-2xy
c 5x^2(x-1)+10xy(x-1)-5y^2(1-x)
d x^5-x^4y-xy^4+y^5
a) 25x2 - y2 + 4y - 4
= (5x)2 - (y - 2)2
= (5x + y - 2)(5x - y + 2)
b) a2 + b2 - x2 - y2 + 2ab - 2xy
= (a2 + 2ab + b2) - (x2 + 2xy + y2)
= (a + b)2 - (x + y)2
= (a + b + x + y)(a + b - x - y)
c) 5x2(x - 1) + 10xy(x - 1) - 5y2(1 - x)
= 5x2(x - 1) + 10xy(x - 1) + 5y2(x - 1)
= (x - 1)(5x2 + 10xy + 5y2)
= 5(x - 1)(x2 + 2xy + y2)
= 5(x -1)(x + y)2
d) x5 - x4y - xy4 + y5
= x4(x - y) - y4(x - y)
= (x - y)(x4 - y4)
= (x - y)(x2 - y2)(x2 + y2) = (x - y)2(x + y)(x2 + y2)
Chu choa, đi hỏi khắp nơi luôn kìa trời!
Bài 1) Phân tích các đa thức sau thành nhân tử:
a) xy + 3x - 7y - 21
b) 2xy - 15 - 6x +5y
c) 2x2 y + 2xy2 - 2x - 2y
d) x2 - (a+b)x + ab
e) 7x3y - 3xyz - 21x2 + 9z
f) 4x + 4y - x2(x+y)
g) y2 + y - x2 + x
h) 4x2 - 2x - y2 - y
i) 9x2 - 25y2 - 6x + 10y
j) x(x+3) - 5x(x-5) - 5(x+3)
k) (5x-4)(4x-5) - (x-3)(x-2) - (5x-4)(3x-2)
l) (5x-4)(4x-5) + (5x-1)(x+4) + 3(3x-2)(4-5x)
m) (5x - 4)2 + (16-25x2) + (5x-4)(3x+2)
a,\(xy+3x-7y-21\)
\(=x\left(y+3\right)-7\left(y+3\right)\)
\(=\left(y+3\right)\left(x-7\right)\)
\(b,2xy-15-6x+5y\)
\(=\left(2xy-6x\right)+\left(-15+5y\right)\)
\(=2x\left(y-3\right)-5\left(3-y\right)\)
\(=2x\left(y-3\right)+5\left(y-3\right)\)
\(=\left(y-3\right)\left(2x+5\right)\)
\(c,2x^2y+2xy^2-2x-2y\)
\(=2\left(x+1\right)\left(xy-1\right)\)
\(d,x^2-\left(a+b\right)x+ab\)
\(=\left(a-x\right)\left(b-x\right)\)
\(e,7x^3y-3xyz-21x^2+9z^2\)
\(=\left(xy-3\right)\left(7x^2-3z\right)\)
\(f,4x+4y-x^2\left(x+y\right)\)
\(=-\left(x-2\right)\left(x+2\right)\left(x+y\right)\)
\(g,y^2+y-x^2+x\)
\(=-\left(x-y-1\right)\left(x+y\right)\)