Chứng tỏ rằng: A=75×(42004+42003+...+42+4+1)+25
là số chia hết cho 100
Chứng tỏ rằng :
A = 75 . ( 42004 + 42003 + ...... + 42 + 4 + 1 ) + 25 là số chia hết cho 100
c/m: A = 75.(42004+ 42003+ .... + 42+4+1) + 25 chia hết cho 100
A=\(75.\left(4^{2004}+4^{2003}+4^2+4+1\right)+25\)
A=\(75.\left(4^{2005}-1\right):3+25\)
A=\(25.\left(4^{2005}-1+1\right)\)
A=\(25.4^{2005}⋮100\)
Nhớ tick cho mình nhé!
2. Chứng tỏ rằng M=75.(42021+42020+....+42+4+1)+ 25 chia hết cho 100
\(M=75.4\left(4^{2020}+4^{2019}+...+4+1\right)+75+25=\)
\(=300.\left(4^{2020}+4^{2019}+...+4+1\right)+100=\)
\(=100\left[3.\left(4^{2020}+4^{2019}+...+4+1\right)+1\right]⋮100\)
A, Chứng tỏ rằng: M = 75.(42017+ 42016 +42 +4 + 1) +25 chia hết cho 10² 6+.
Chứng tỏ rằng
\(A=75\left(4^{2004}+4^{2003}+...+4^2+4+1\right)\)Là số chia hết hết cho 100
A=75(42004+42003+..+4+1)+25
=75(42004+42003+..+4)+75+25
=3.25.(42004+42003+...+4)+100
=3.25.4(42003+42002+...+1)+100
=3.100(42003+42002+..+1)+100\(⋮\)100
=> A\(⋮\)100
Đúng thì k nha
Chứng tỏ rằng A= 75( 4^2023+ 4^2022+4^2021+...+ 4^2+ 4+ 1)+ 25 chia hết cho 100
Đặt \(A=75\left(4^{2023}+4^{2022}+...+4^2+4+1\right)+25\)
Đặt \(B=4^{2023}+4^{2022}+...+4^2+4+1\)
=>\(4B=4^{2024}+4^{2023}+...+4^3+4^2+4\)
=>\(4B-B=4^{2024}+4^{2023}+...+4^3+4^2+4-4^{2023}-4^{2022}-...-4^2-4-1\)
=>\(3B=4^{2024}-1\)
=>\(B=\dfrac{4^{2024}-1}{3}\)
\(A=75\left(4^{2023}+4^{2022}+...+4^2+4+1\right)+25\)
\(=75\cdot\dfrac{4^{2024}-1}{3}+25\)
\(=25\cdot\left(4^{2024}-1\right)+25\)
\(=25\cdot4^{2024}\)
\(=25\cdot4\cdot4^{2023}=100\cdot4^{2023}⋮100\)
chứng minh rằng M chia hết cho 100
M=75(42021+42020+...+42+4+1
Ta có M ⋮ 25 vì 75 ⋮ 25
Lại có M = 75 ( 42021 + 42020 + ... + 42 + 4 + 1 )
= 75 . 4 ( 22020 + 22019 + ... + 4 + 1 + 0,25 ) ⋮ 4 vì 4 ⋮ 4
Mà ( 25; 4 ) = 1 ⇒ M ⋮ 100
Vậy M ⋮ 100
Chứng tỏ rằng:
\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\)là số chia hết cho 100
Chắc đặt nhầm lớp rồi
Ta có :\(B=4^{2004}+4^{2003}+...+4^2+4+1\)
\(4B=\left(4^{2004}+4^{2003}+...+4^2+4+1\right).4\)
\(4B=4^{2005}+4^{2004}+...+4^3+4^2+4\)
\(4B-B=\left(4^{2005}+4^{2004}+...+4^3+4^2+4\right)\)\(-\left(4^{2004}+4^{2003}+...+4+1\right)\)
\(3B=\left(4^{2005}-1\right)\)\(\Rightarrow\frac{4^{2005}-1}{3}\)
\(\Rightarrow A=75.\frac{4^{2005}-1}{3}+25\)
\(\Rightarrow A=25.\left(4^{2005}-1\right)+25\)
\(\Rightarrow A=25.\left(4^{2005}-1+1\right)\)
\(\Rightarrow A=25.4.4^{2004}\)
\(\Rightarrow A=100.4^{2004}\)
Mà 100 chia hết 100 nên \(100.4^{2004}\) chia hết cho 100
B=4^0 + 4^1 +...+ 4^2004
4B=4^1+4^2+...+4^2005
3B=4^2004-4^0
B=(4^2004-4^0):3
Thay B vào ta có :
A=75.(4^2004-4^0):3+25
A=25.(4^2004-4^0)+25
A=25.4^2004
A=100.4^2003
Vậy A chia hết cho 100
Chứng tỏ rằng:
A = 75. (42004 + 42003 + . . . . . + 42 + 4 + 1) + 25 là số chia hết cho 100