Tìm số nguyên dương n sao cho \(\frac{n\left(2n-1\right)}{26}\) là 1 SCP (ko dùng delta)
Tìm số nguyên dương n sao cho \(\frac{n\left(2n-1\right)}{26}\)là số chính phương
tìm số nguyên dương n sao cho \(\frac{n\left(2n-1\right)}{26}\) là số chính phương
Ta có \(\frac{n\left(2n-1\right)}{26}=k^2\Leftrightarrow2n^2-n-26k^2=0\)
\(\Delta=208k^2+1=t^2\)(vì n nguyên dương)
\(\Rightarrow\left(t+4\sqrt{13}k\right)\left(t-4\sqrt{13}k\right)=1\)
\(\Leftrightarrow\hept{\begin{cases}t+4\sqrt{13}k=1\\t-4\sqrt{13}k=1\end{cases}\Leftrightarrow\hept{\begin{cases}k=0\\t=1\end{cases}}}\)
Thế vào tìm được \(\orbr{\begin{cases}n=0\\n=\frac{1}{2}\end{cases}}\)
Vậy không có giá trị n nguyên dương nào thỏa mãn cái đó
\(\frac{n\left(2n-1\right)}{26}\text{ là SCP }\Leftrightarrow n\left(2n-1\right)=26k^2\)
\(\Delta_n=208k^2+1=y^2\Leftrightarrow y^2-208k^2=1\underrightarrow{\text{PELL}}\)
\(k=\pm\frac{\left(649-180\sqrt{13}\right)^m-\left(649+180\sqrt{13}\right)^m}{8\sqrt{13}}\)
\(n=\frac{1}{8}\left[-\left(649-180\sqrt{13}\right)^m-\left(649+180\sqrt{13}\right)^m+2\right]\left(m\inℤ,m\ge0\right)\)
Fan chân chính của anh slen
tìm số nguyên dương n sao cho \(\frac{n\left(2n-1\right)}{26}\)là số chính phương
chú ý: không sử dụng denta
tìm số nguyen dương n sao cho \(\frac{n\left(2n-1\right)}{26}\)là số chính phương
Tìm tất cả số nguyên dương n thoả mãn (n+1)(4n2-2n-5) là SCP
Lời giải:
Gọi $d=ƯCLN(n+1, 4n^2-2n-5)$
$\Rightarrow n+1\vdots d; 4n^2-2n-5\vdots d$
$\Rightarrow 4(n+1)^2-(4n^2-2n-5)\vdots d$
$\Rightarrow 10n+9\vdots d$
$\Rightarrow 10(n+1)-1\vdots d$
Mà $n+1\vdots d$ nên $1\vdots d\Rightarrow d=1$
Vậy $n+1, 4n^2-2n-5$ nguyên tố cùng nhau. Để $(n+1)(4n^2-2n-5)$ là scp thì bản thân mỗi số $n+1, 4n^2-2n-5$ là scp.
Đặt $n+1=a^2; 4n^2-2n-5=b^2$
$\Rightarrow 4(a^2-1)^2-2(a^2-1)-5=b^2$
$\Leftrightarrow 4a^4-8a^2+4-2a^2+2-5=b^2$
$\Leftrightarrow 4a^4-10a^2+1=b^2$
$\Leftrightarrow 16a^4-40a^2+4=4b^2$
$\Leftrightarrow (4a^2-5)^2-21=4b^2$
$\Leftrightarrow 21=(4a^2-5)^2-(2b)^2=(4a^2-5-2b)(4a^2-5+2b)$
Đến đây là dạng phương trình tích cơ bản, chỉ cần xét các TH để tìm ra $a,b$
Cho n là số nguyên dương lớn hơn 1. Chứng minh rằng:
\(\frac{1}{n!}< \left(2-\frac{1}{n}\right)\left(2-\frac{3}{n}\right)...\left(2-\frac{2n-1}{n}\right)\)
Tìm số nguyên dương n sao cho \(\frac{n\left(2n-1\right)}{26}\)là số chính phương.
Tìm n thuộc N* sao cho A=\(\frac{1.3.5.7...\left(2n-1\right)}{n^n}+2n\) là số nguyên tố
Tìm các số n nguyên dương sao cho \(\left(n^3-8n^2+2n\right)⋮\left(n^2+1\right)\)