Tính tỉ số A/B biết:
A= 1/1*2+1/3*4+1/5*6+...+1/199+200
B= 1/101*200+1/102*199+...+1/200*101
Tính tỉ số A/B biết:
A= 1/1*2+1/3*4+1/5*6+...+1/199+200
B= 1/101*200+1/102*199+...+1/200*101
cho a=1/1*2+1/3*4+1/5*6+...+1/199*200
b=1/101+1/102+...+1/200
tính a/b
Ta có: \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
\(\Rightarrow A=B\)
Khi đó, \(\frac{A}{B}=1\)
chứng tỏ
a) 1 phần 101 + 1 phần 102 + 1 phần 103 + ..... + 1 phần 199 + 1 phần 200 <1
b ) 1 phần 101 + 1 phần 102 +...+ 1 phần 199 + 1 phần 200 > 7 phần 12
bài 2 cho a phần b = 1 + 1 phần 2 + 1 phần 3 + 1 phần 4 + 1 phần 5 + 1 phần 6 ( a ,b ∈ N )
chứng tỏ a ⋮7
cần gấp mn ơi trưa nay mình đi học rồi
cmr : -1/2 + 1/3 + -1/4 + ..... + 1/199 + -1/200 = 1/101 + 1/102 + .... + 199 + 1/200
chứng minh rằng
a,1\101+1\102+...+1\199+1\200 <1
b,1\101+1\102+...+1\149+1\150>1\3
c,1\101+1\102+...+1\199+1\200>7\12
cái này dễ lắm chỉ là chưa để ý thôi:
a,1/101>1/102>...>1/199>1/200
=>1/101+1/102+...+1/199+1/200<100*1/101=100/101<1
các phần khác làm tương tự
đánh mỏi tay quá duyệt luôn đi
cái này ở trong học tốt toán 6 đúng không
CM B=1-1/2+1/3-1/4+.....+1/199-1/200 = 1/101+1/102+.....+1/199+1/200
Tính các tổng sau:
a) A = 1*2+2*3+3*4+...+2014*2015
b) B = 101^2+102^2+...+199^2+200^2
c) C = 1*3+2*4+3*5+4*6+...+99*101+100*102
cho mi sửa lại:
\(a) A = 1^2+2^3+3^4+...+2014^{2015} b) B = 101^2+102^2+...+199^2+200^2 c) C = 1^3+2^4+3^5+4^6+...+99^{101}+100^{102}\)
dấu 8 là nhân còn dấu ^ là mũ ạ
chứng minh.1-1/2+1/3-1/4+1/5-1/6+...1/199-1/200=1/101+1/102+1/103+...+1/200
Xét vế trái: 1-1/2+1/3-1/4+1/5-1/6+...+1/199-1/200
=(1+1/3+1/5+..+1/199)-(1/2+1/4+..+1/200)
=(1+1/2+1/3+1/4+1/5+...+1/199+1/200)-2.(1/2+1/4+..+1/200)
=1+1/2+1/3+1/4+1/5+..+1/199+1/200-1-1/2-...-1/100
=1/101+1/102+1/103+...1/200
Vậy vế trái bằng vế phải
cho A=1/101+1/102+1/103+...+1/199+1/200 cmr 5/8<a<3/4
\(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{120}\left(a\right)\)
\(\Rightarrow A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+\dfrac{1}{177}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A>25.\dfrac{1}{125}+25.\dfrac{1}{150}+25.\dfrac{1}{175}+25.\dfrac{1}{200}\)
\(\Rightarrow A>\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\)
\(\Rightarrow A>\dfrac{168+140+120+105}{840}=\dfrac{533}{840}>\dfrac{5}{8}\left(\dfrac{533}{840}>\dfrac{525}{840}\right)\)
\(\Rightarrow A>\dfrac{5}{8}\left(1\right)\)
\(\left(a\right)\Rightarrow A=\left(\dfrac{1}{101}+...\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A< 20.\dfrac{1}{100}+20.\dfrac{1}{120}+20.\dfrac{1}{140}+20.\dfrac{1}{160}+20.\dfrac{1}{180}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{504+420+360+315+280}{2520}=\dfrac{1879}{2520}< \dfrac{3}{4}\left(\dfrac{1879}{2520}< \dfrac{1890}{2520}\right)\)
\(\Rightarrow A< \dfrac{3}{4}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{5}{8}< A< \dfrac{3}{4}\left(dpcm\right)\)