Cho đa thức f(x)=ax+b
Tìm điều kiện của các hằng số a,b để: f(x1+x2)=f(x1)+f(x2)
với mọi x thuộc R
Cho f(x)=ax+b.
Tìm điều kiện của b để f(x1+x2)=f(x1)+f(x2)
Với mọi x1,x2 thuộc Q
Cho f(x)=ax+b.
Tìm điều kiện của b để f(x1+x2)=f(x1)+f(x2)
Với mọi x1,x2 thuộc Q
\(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)
\(\Rightarrow a\left(x_1+x_2\right)+b=ax_1+b+ax_2+b\)
\(\Rightarrow a\left(x_1+x_2\right)+b=a\left(x_1+x_2\right)+2b\)
\(\Rightarrow b=2b\)
\(\Rightarrow2b-b=0\Rightarrow b=0\)
Cho f(x)=ax+b.
Tìm điều kiện của b để f(x1+x2)
Với mọi x1,x2 thuộc Q
Cho đa thức f(x) = ax + b
Tìm điều kiện của các hằng số a,b để:
f(x1 + x2) = f(x1) + f(x2) [Với mọi x thuộc R]
\(f\left(x1\right)=ax1+b;f\left(x2\right)=ax2+b;f\left(x1+x2\right)=a\left(x1+x2\right)+b\)
f(x1+x2)=ax1+ax2+b=ax1+ax2+2b
=> b=0; mọi a
Cho đa thức f (x) = ax+b và g (x) = cx+d . Chứng minh nếu có hai giá trị x1 và x2 của x mà x1 khác x2 sao cho f (x1) = g (x1) và f (x2) = g (x2) thì f (x) = g (x) với mọi x thuộc Z
Cho đa thức f (x) = ax+b và g (x) = cx+d . Chứng minh nếu có hai giá trị x1 và x2 của x mà x1 khác x2 sao cho f (x1) = g (x1) và f (x2) = g (x2) thì f (x) = g (x) với mọi x thuộc Z
cho hàm số f(x) có tính chất f(x1 + x2) = f(x1) + f(x2) với mọi x1 + x2 thuộc R chứng minh rằng hàm số f(x) có các tính chất sau : a, f(0) =0 b, f(-x) =-f(x) với mọi x thuộc R c, f(x1-x2) = f(x1) - f(x2) với mọi x1 , x2 thuộc R giúp mk nhaaaaaaa
Xét đa thức bậc nhất P(x) = ax b. Tìm điều kiện của hằng số a, b để có đẳng thức : P(x1 x2) = P(x1) P(x2), với mọi số thực x1, x2.
Ta có: P(x1 + x2) = a(x1 + x2) + b = ax1 + ax2 + b
P(x1) + P(x2) = ax1 + b + ax2 + b = ax1 + ax2 + 2b
Để P(x1 + x2) = P(x1) + P(x2) thì ax1 + ax2 + b = ax1 + ax2 + 2b
=> b = 2b => b - 2b = 0 => -b = 0 => b = 0
Vậy khi b = 0 , a
thì đẳng thức P(x1 + x2) = P(x1) + P(x2)
Xét các khẳng định sau
i) Nếu hàm số y=f(x) có đạo hàm dương với mọi x thuộc tập số D thì f x 1 < f x 2 ∀ x 1 , x 2 ∈ D , x 1 < x 2
ii) Nếu hàm số y=f(x) có đạo hàm âm với mọi x thuộc tập số D thì f x 1 > f x 2 ∀ x 1 , x 2 ∈ D , x 1 < x 2
iii) Nếu hàm số y=f(x) có đạo hàm dương với mọi x thuộc R thì f x 1 < f x 2 ∀ x 1 , x 2 ∈ R , x 1 < x 2
iv) Nếu hàm số y=f(x) có đạo hàm âm với mọi x thuộc R thì f x 1 > f x 2 ∀ x 1 , x 2 ∈ R , x 1 < x 2
Số khẳng định đúng là
A. 1
B. 2
C. 3
D. 4