\(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)
\(\Rightarrow a\left(x_1+x_2\right)+b=ax_1+b+ax_2+b\)
\(\Rightarrow a\left(x_1+x_2\right)+b=a\left(x_1+x_2\right)+2b\)
\(\Rightarrow b=2b\)
\(\Rightarrow2b-b=0\Rightarrow b=0\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)
\(\Rightarrow a\left(x_1+x_2\right)+b=ax_1+b+ax_2+b\)
\(\Rightarrow a\left(x_1+x_2\right)+b=a\left(x_1+x_2\right)+2b\)
\(\Rightarrow b=2b\)
\(\Rightarrow2b-b=0\Rightarrow b=0\)
Cho f(x)=ax+b.
Tìm điều kiện của b để f(x1+x2)=f(x1)+f(x2)
Với mọi x1,x2 thuộc Q
Cho f(x)=ax+b.
Tìm điều kiện của b để f(x1+x2)
Với mọi x1,x2 thuộc Q
Cho đa thức f (x) = ax+b và g (x) = cx+d . Chứng minh nếu có hai giá trị x1 và x2 của x mà x1 khác x2 sao cho f (x1) = g (x1) và f (x2) = g (x2) thì f (x) = g (x) với mọi x thuộc Z
Cho đa thức f (x) = ax+b và g (x) = cx+d . Chứng minh nếu có hai giá trị x1 và x2 của x mà x1 khác x2 sao cho f (x1) = g (x1) và f (x2) = g (x2) thì f (x) = g (x) với mọi x thuộc Z
Cho hàm số y = f(x) xác định với mọi x thuộc Q và có tính chất f(x1) + f(x2) = f(x1+ x2) với mọi x1 x2 thuộc Q . CMR f(-x) = -f (x )
cho hàm số y=f(x) xác định với mọi x thuộc Q thỏa mãn với mọi x1,x2 thuộc Q thì f(x1+x2) và f(100) =2020. Tính f(-100)
giúp mình vơi mai nộp rùi
cho hàm số y=ax chứng minh rằng
A) với các số x1, x2 thì hai giá trị x ta có y1, y2 là 2 giá trị tương ứng của y thì f(x1+x2)=f(x1)+f(x2)
B)với k thuộc Q thì f(kx)=k.f(x) với mọi x thuộc Q
cho hàm số f(x) xác định với mọi x khác 0 thỏa mãn
a) f(1)=1
b)f(1/x)=1/x^2.f(x)
c) f(x1+x2)=f(x1)+f(x2) với mọi x1 , x2 khác 0 , x1+x2 khác 0 . CTR f(5/7)=5/7
Cho hàm số y =f(x) =ax. Chứng minh rằng:
a)Với các số x1; x2là hai giá trị của x ta có y1; y2là hai giá trị tương ứng của y thì f(x1+ x2) = f(x1) + f(2)
b) Với k ∈Q thì f(kx) = k.f(x) với mọi x ∈Q