Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Khánh Nguyễn
Xem chi tiết
Đỗ Tuệ Lâm
25 tháng 12 2021 lúc 19:59

Áp dụng đl pytago vào tam giác vuông abc, ta có:

\(ab^2+ac^2=bc^2\)

\(6^2+8^2=bc^2\)

\(\Rightarrow bc=\sqrt{6^2+8^2}=10cm\)

ah=\(\dfrac{1}{2}bc=\dfrac{1}{2}10=5cm\)

 

01- Nguyễn Khánh An
Xem chi tiết
NGUYỄN♥️LINH.._.
21 tháng 3 2022 lúc 20:54

C

Mạnh=_=
21 tháng 3 2022 lúc 20:54

C

Kaito Kid
21 tháng 3 2022 lúc 20:55

C

hien dinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 6 2023 lúc 12:20

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

c Xét ΔBHF vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBF chung

=>ΔBHF=ΔBAC

=>BF=BC

mà góc FBC=60 độ

nên ΔBFC đều

Nguyễn Ngọc Trình
Xem chi tiết
Lương Nguyễn Anh Đức
Xem chi tiết
Thành Vũ Trung
3 tháng 3 2016 lúc 18:00

\(\sqrt{6^2+8^2}=10\left(cm\right)\)

Anh Pha
Xem chi tiết
Anh khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 9:52

a: BC=căn 6^2+8^2=10cm

C ABC=6+8+10=24cm

b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

c: ΔBAD=ΔBHD

=>BA=BH

=>ΔBAH cân tại B

Chi Đào
Xem chi tiết
Lấp La Lấp Lánh
16 tháng 9 2021 lúc 13:20

Hình như đề cho thiếu rồi ấy bạn

Nguyễn Minh Hằng
Xem chi tiết
Kiều Vũ Linh
25 tháng 4 2023 lúc 8:05

loading...  

a) Xét hai tam giác vuông: ∆ABC và ∆HBA có:

∠B chung

⇒ ∆ABC ∽ ∆HBA (g-g)

b) ∆ABC vuông tại A (gt)

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10

Do ∆ABC ∽ ∆HBA (cmt)

⇒ AC/AH = BC/AB

⇒ AH = AB.AC/BC

= 6.8/10

= 4,8 (cm)

∆ABH vuông tại H

⇒ AB² = AH² + BH² (Pytago)

⇒ BH² = AB² - AH²

= 6² - (4,8)²

= 12,96

⇒ BH = 3,6 (cm)

Chiến Hoàng
25 tháng 4 2023 lúc 8:02

 

a) Ta có:

 

- Góc A của tam giác ABC là góc vuông, nên ta có thể tính được độ dài đoạn thẳng AH bằng cách sử dụng định lí Pythagoras: AH = sqrt(AB^2 + AC^2) = sqrt(6^2 + 8^2) = 10.

 

- Góc A của tam giác ABC cũng là góc giữa đường cao AH và cạnh huyền BC, nên ta có thể tính được tỉ số giữa độ dài đoạn thẳng AH và độ dài cạnh huyền BC: AH/BC = AC/AB = 8/6 = 4/3.

 

- Từ tỉ số này, ta có thể suy ra rằng tam giác ABC đồng dạng với tam giác HBA (vì cả hai tam giác có cùng một góc và tỉ số giữa các cạnh tương ứng bằng nhau).

 

b) Để tính độ dài các cạnh BC, AH, BH, ta có thể sử dụng các công thức sau:

 

- Độ dài cạnh BC: BC = AB/AC * AH = 6/8 * 10 = 15/2 = 7.5.

 

- Độ dài đoạn thẳng BH: BH = sqrt(AH^2 - AB^2) = sqrt(10^2 - 6^2) = 8.

 

- Độ dài đoạn thẳng AH đã được tính ở trên: AH = 10.

 

Vậy độ dài các cạnh BC, AH, BH lần lượt là 7.5cm, 10cm, 8cm.