cho x,y,z là các số dương. CMR: D=x/2x+y+z + y/2y+z+x +z/2z+y+x < hoặc = 3/4
Cho x,y,z là các số dương
CMR x/(2x+y+z)+y/(2y+x+z)+z/(2z+x+y)<= 3/4
Đặt \(\hept{\begin{cases}2x+y+z=4a\\2y+x+z=4b\\2z+x+y=4c\end{cases}\Rightarrow}\hept{\begin{cases}x=3a-b-c\\y=3b-c-a\\z=3c-a-b\end{cases}}\)thay vào biểu thức đó
\(\Rightarrow\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\)
\(=\frac{3a-b-c}{4a}+\frac{3b-c-a}{4b}+\frac{3c-a-b}{4c}\)
\(=\frac{3}{4}-\frac{b-c}{4a}+\frac{3}{4}-\frac{c-a}{4b}+\frac{3}{4}-\frac{a-b}{4c}\)
\(=\frac{9}{4}-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\)
Áp dụng BĐT sau: \(\frac{a}{b}+\frac{b}{a}\ge2\Rightarrow\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\ge6\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\ge\frac{6}{4}\)
\(\Leftrightarrow\frac{9}{4}-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\le\frac{3}{4}\)
Từ đó ta có: \(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\le\frac{3}{4}\)(đpcm).
Dấu "=" xảy ra <=> x=y=z.
Cho x,y,z là các số dương. CMR :
D = \(\frac{x}{2x+y+z}+\frac{Y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\)
Cho x, y , z là các số dương . CMR :
\(D=\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\)\(\le\frac{3}{4}\)
Bài của lớp 7 ghê vậy!!
Áp dụng bất đẳng thức Cauchy cho 3 số dương x,y,z
ta có bổ đề \((a+b+c)({1\over a}+{1\over b}+{1\over c})\) > 9
Áp dụng vào ta có
\(D*({2x+y+z\over x}+{2y+x+z\over y}+{2z+y+x\over z})\) >9(1)
Ta có \({2x+y+z\over x}+{2y+x+z\over y}+{2z+y+x\over z}\) =\(2+{y+z\over x}+2+{z+x\over y}+2+{y+x\over z}\)=\(6-3+{y+z\over x}+1+{z+x\over y}+1+{y+x\over z}+1\)=\(3+{x+y+z\over x}+{y+x+z\over y}+{z+y+x\over z}\)=\(3+(x+y+z)({1\over x}+{1\over y}+{1\over z})\) > 3+9=12
thay vào(1)
Ta có \(D \) < \({9\over 12}\)=\({3\over 4}\)
Dấu "=" xảy ra khi x=y=z
=> ĐPCM
áp dụng bất đẳng thức phụ : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{x}{2x+y+z}=\frac{x}{x+y+x+z}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
\(\frac{y}{2y+x+z}\le\frac{1}{4}\left(\frac{y}{y+x}+\frac{y}{y+z}\right)\)
\(\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)
cộng vế theo vế
\(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{1}{4}\cdot3=\frac{3}{4}\)(đpcm)
cho x ; y ; z là các số dương . Chứng minh rằng : x/2x + y + z + y / 2y + z + x + z / 2z + x + y nhỏ hơn hoặc bằng \(\frac{3}{4}\)
Đặt \(a=2x+y+z;b=2y+z+x;c=2z+x+y\)
\( \implies\) \(a+b+c=\left(2x+y+z\right)+\left(2y+z+x\right)+\left(2z+x+y\right)\)
\( \implies\) \(a+b+c=4x+4y+4z\)
\( \implies\) \(x+y+z=\frac{a+b+c}{4}\)
+)Ta có : \(a=2x+y+z\)
\(\iff\) \(a=x+\left(x+y+z\right)\)
\(\iff\) \(a-\left(x+y+z\right)=x\)
\(\iff\) \(a-\frac{a+b+c}{4}=x\)
\(\iff\) \(x=\frac{3a-b-c}{4}\)
+)Ta có :\(b=2y+z+x\)
\(\iff\) \(b=y+\left(y+z+x\right)\)
\(\iff\)\(b-\left(y+z+x\right)=y\)
\(\iff\) \(b-\frac{a+b+c}{4}=y\)
\(\iff\)\(y=\frac{3b-c-a}{4}\)
+)Ta có :\(c=2z+x+y\)
\(\iff\) \(c=z+\left(z+x+y\right)\)
\(\iff\) \(c-\left(z+x+y\right)=z\)
\(\iff\) \(c-\frac{a+b+c}{4}=z\)
\(\iff\)\(z=\frac{3c-a-b}{4}\)
\( \implies\) \(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\)
\(=\frac{3a-b-c}{4a}+\frac{3b-c-a}{4b}+\frac{3c-a-b}{4c}\)
\(=\frac{9}{4}-\left(\frac{b}{4a}+\frac{c}{4a}+\frac{c}{4b}+\frac{a}{4b}+\frac{a}{4c}+\frac{b}{4c}\right)\)
\(=\frac{9}{4}-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\)
\(=\frac{9}{4}-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\)
Áp dụng bất đẳng thức ( BĐT Cosi ) : \(m+n\)\( \geq\)\(2\sqrt{mn}\) \(\left(m;n>0\right)\)ta được :
\(\frac{b}{a}+\frac{a}{b}\) \( \geq\) 2 \(\sqrt{\frac{b}{a}.\frac{a}{b}}\) = 2 \( \implies\) \(\frac{b}{a}+\frac{a}{b}\) \( \geq\) 2
\(\frac{c}{a}+\frac{a}{c}\) \( \geq\) 2 \(\sqrt{\frac{c}{a}.\frac{a}{c}}\) = 2 \( \implies\) \(\frac{c}{a}+\frac{a}{c}\) \( \geq\) 2
\(\frac{b}{c}+\frac{c}{b}\) \( \geq\) 2 \(\sqrt{\frac{b}{c}.\frac{c}{b}}\) = 2 \( \implies\) \(\frac{b}{c}+\frac{c}{b}\) \( \geq\) 2
\( \implies\) \(\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\) \( \geq\) 2 + 2 + 2
\( \implies\) \(\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\) \( \geq\) 6
\( \implies\) \(\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \( \geq\) \(\frac{6}{4}\)
\( \implies\) \(\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \( \geq\) \(\frac{3}{2}\)
\( \implies\) \(-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \(\leq\) \(-\frac{3}{2}\)
\( \implies\) \(\frac{9}{4}-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \(\leq\) \(\frac{9}{4}-\frac{3}{2}\)
\( \implies\) \(\frac{9}{4}-\frac{1}{4}\left[\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right]\) \(\leq\) \(\frac{3}{4}\)
Dấu " = " xảy ra khi a = b = c hay x = y = z
https://chat.lazi.vn/upload/images/2020/03/file_xot1584973258.jpg
Chúc bạn hok tốt!!!
Cho x;y;z là các số dương
CMR: \(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\)
\(\frac{x}{2x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\le\frac{1}{16}\left(\frac{x}{x}+\frac{x}{y}+\frac{x}{x}+\frac{x}{z}\right)=\frac{1}{16}\left(2+\frac{x}{y}+\frac{x}{z}\right)\)
\(tươngtự:\frac{y}{2y+z+x}\le\frac{1}{16}\left(2+\frac{y}{z}+\frac{y}{x}\right);\frac{z}{2z+x+y}\le\frac{1}{16}\left(2+\frac{z}{x}+\frac{z}{y}\right).\text{Cộng vế theo vế ta được:}\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+y+x}\le\frac{1}{16}\left(2+2+2+\frac{x}{y}+\frac{y}{x}+\frac{z}{x}+\frac{x}{z}+\frac{y}{z}+\frac{z}{y}\right)=\frac{1}{16}\left[6+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\right]\ge\frac{1}{16}\left(6+2\sqrt{\frac{xy}{xy}}+2\sqrt{\frac{xz}{xz}}+2\sqrt{\frac{yz}{yz}}\right)=\)
\(=\frac{12}{16}=\frac{3}{4}\Rightarrow\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\left(\text{đpcm}\right)\)
Với các số dương x,y,z cmr\(\frac{x^3}{y\left(z+2x\right)}+\frac{y^3}{z\left(x+2y\right)}+\frac{z^3}{x\left(y+2z\right)}\)lớn hơn hoặc bằng \(\frac{x+y+z}{3}\)
dự đoán điểm rơi : x = y = z > 0
dùng Cô si :bớt. Ta làm như sau
Giải : Đặt P = \(\frac{x^3}{y\left(z+2x\right)}+\frac{y^3}{z\left(x+2y\right)}+\frac{z^3}{x\left(y+2z\right)}.\)áp dụng bất đẳng thức Cô si cho 3 số dương.
ta có : \(\frac{x^3}{y\left(z+2x\right)}+\frac{y}{3}+\frac{z+2x}{9}\ge3\sqrt[3]{\frac{x^3.y.\left(z+2x\right)}{y.\left(z+2x\right).3.9}}=x.\left(1\right)..\)
chứng minh tương tự ta có :
\(\frac{y^3}{z.\left(x+2y\right)}+\frac{z}{3}+\frac{x+2y}{9}\ge y\left(2\right).\)\(\frac{z^3}{x.\left(y+2z\right)}+\frac{x}{3}+\frac{y+2z}{9}\ge z.\left(3\right).\)
Cộng vế với vế các bất đẳng thức (1) , (2) và (3) ta được :
\(P+\frac{2}{3}.\left(x+y+z\right)\ge x+y+z\)
=> \(P\ge\frac{x+y+z}{3}.\) đấu " = " xẩy ra khi x = y = z > 0 ( đpcm )
x,y,z là các số nguyên dương: CMR
\(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\)
Cho x,y, z là các số dương. C/m:
\(D=\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\)
Cậu vào đây nha !
Câu hỏi của doanthihuong - Toán lớp 7 - Học toán với OnlineMath
cho z,y,z là các số dương. Chứng minh rằng: x/2x+y+z + y/2y+z+x + z/2z+x+y <= 3/4
Áp dụng bđt Cauchy-Schwarz:
\(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\)
\(=\frac{x}{\left(x+y\right)+\left(x+z\right)}+\frac{y}{\left(x+y\right)+\left(y+z\right)}+\frac{z}{\left(y+z\right)+\left(x+z\right)}\)
\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}+\frac{z}{x+z}\right)=\frac{3}{4}\)
\("="\Leftrightarrow x=y=z\)