Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quyết Tâm Chiến Thắng
Xem chi tiết
tth_new
7 tháng 9 2019 lúc 10:54

Làm bài này một hồi chắc bay não:v

Bài 1:

a) Áp dụng BĐT AM-GM:

\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b = c.

b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.

Bài 2:

a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v

b) Theo BĐT Bunhicopxki:

\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)

Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)

Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:

\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)

tth_new
7 tháng 9 2019 lúc 10:56

Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?

Quyết Tâm Chiến Thắng
7 tháng 9 2019 lúc 11:04

tth-new ơi Bài 1 câu a áp dụng BĐT AM-GM cho 2 số nào thế ạ

Hỏi Làm Gì
Xem chi tiết
Hoàng Lê Bảo Ngọc
30 tháng 9 2016 lúc 12:23

Bài 1. Từ giả thiết suy ra 1-a = b+c và áp dụng \(\left(x+y\right)^2\ge4xy\) 

Ta có : \(4\left(1-a\right)\left(1-b\right)\left(1-c\right)=4\left(b+c\right)\left(1-c\right)\left(1-b\right)\le\left[\left(b+c\right)+\left(1-c\right)\right]^2\left(1-b\right)\)

\(=\left(b+1\right)^2\left(1-b\right)=\left(b+1\right)\left(1-b^2\right)=-b^2\left(b+1\right)+\left(b+1\right)\le b+1=a+2b+c\)

Le Van Hung
Xem chi tiết
nguyễn thị phượng
Xem chi tiết
tran ngoc ly
Xem chi tiết
lưu thị hương lan
Xem chi tiết
tth_new
8 tháng 10 2019 lúc 20:43

Làm chữa lỗi phát:v Đến giờ mới nghĩ ra(thực ra là tình cờ xem lại ngày xưa:(

\(VT=\Sigma\frac{\sqrt{\left(a^2+b^2\right)2ab}}{a^2+b^2}\ge\Sigma\frac{2ab}{a^2+b^2}+3-3\)

\(=\Sigma\frac{\left(a+b\right)^2}{a^2+b^2}-3\ge\frac{\left[2\left(a+b+c\right)\right]^2}{2\left(a^2+b^2+c^2\right)}-3\)

\(=\frac{2\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)}-3=\frac{2\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{a^2+b^2+c^2}-3\)

\(=\frac{4\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}-3=1\)(qed)

Đẳng thức xảy ra khi a = b = 1; c = 0 và các hoán vị (xét sơ sơ thôi chớ xét chi tiết em không biết làm đâu:v)

P.s: Chả biết có đúng hay không nữa:(( Lần này mà không đúng thì khổ.

Thảo Nai
Xem chi tiết
Trà My
23 tháng 7 2017 lúc 10:18

cảm ơn bạn vì đã giúp mình tìm hiểu thêm câu hỏi

Phan Văn Hiếu
28 tháng 7 2017 lúc 20:38

a) bđt cosi

b) \(\left(\sqrt{a+b}\right)=a+b\)

\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)

\(a+b+2\sqrt{ab}>a+b\)

=> đpcm

c) xét hiệu \(a-\sqrt{a}+\frac{1}{4}+b-\sqrt{b}+\frac{1}{4}\ge0\)

d)https://olm.vn/hoi-dap/question/1003405.html

nè ngại làm

Phan Nghĩa
17 tháng 7 2020 lúc 17:09

Bài toán tương đương với : : \(a+b\ge2\sqrt{ab}\)

Ta có điều hiển nhiên sau : \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(< =>a+b-2\sqrt{ab}\ge0\)

\(< =>a+b\ge2\sqrt{ab}\left(đpcm\right)\)

Khách vãng lai đã xóa
Kudo
Xem chi tiết
Nguyễn Đức Cảnh
Xem chi tiết
alibaba nguyễn
31 tháng 3 2017 lúc 18:54

\(a+b+c\ge\frac{a-b}{a+5}+\frac{b-c}{b+5}+\frac{c-a}{c+5}\)

\(\Leftrightarrow\left(a-\frac{a}{a+5}+\frac{a}{c+5}\right)+\left(b-\frac{b}{b+5}+\frac{b}{a+5}\right)+\left(c-\frac{c}{c+5}+\frac{c}{b+5}\right)\ge0\)

\(\Leftrightarrow a\left(\frac{ac+6a+4c+25}{\left(a+5\right)\left(c+5\right)}\right)+b\left(\frac{ab+6b+4a+25}{\left(b+5\right)\left(a+5\right)}\right)+c\left(\frac{bc+6c+4b+25}{\left(c+5\right)\left(b+5\right)}\right)\ge0\)

Cái này đúng vì a, b, c không âm

Dấu = xảy ra khi \(a=b=c=0\)

Vũ Minh Thanh
5 tháng 4 2017 lúc 9:36

ko biết đâu vì em mới học lớp 5 thôi!

maivantruong
5 tháng 4 2017 lúc 19:09

a=0,b=0,c=0

a:b:c khong am 

đúng 100% luôn 

bài để vai