Xét xem các số a và b có thể là số vô tỉ không nếu:
a) ab và a/b là số vô tỉ.
b) a + b và a/b là số hữu tỉ (a + b ≠0)
c) a + b, a2 và b2 là số hữu tỉ (a + b ≠0)
Xét xem các số a và b có thể là số vô tỉ không nếu:
a) ab và a/b là số vô tỉ.
b) a + b và a/b là số hữu tỉ (a + b ≠ 0)
c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)
$a=b=\sqrt{2}$a)a,b có thể là số vô tỉ . VD;a=b=√2 là vô tỉ mà ab và a/b đều hữu tỉ.
b) Trong trường hợp này $a,b$a,b không là số vô tỉ (tức cả a,b đều là số hữu tỉ). Thực vậy theo giả thiết $a=bt$a=bt, với $t$t là số hữu tỉ khác $-1$−1. Khi đó $a+b=b\left(1+t\right)=s$a+b=b(1+t)=s là số hữu tỉ, suy ra $b=\frac{s}{1+t}$b=s1+t là số hữu tỉ. Vì vậy $a=bt$a=bt cũng hữu tỉ.
c) Trong trường hợp này $a,b$a,b có thể là số vô tỉ. Ví dụ ta lấy
$a=1-\sqrt{3},b=3+\sqrt{3}\to a,b$a=1−√3,b=3+√3→a,b vô tỉ nhưng $a+b=4$a+b=4 là số hữu tỉ và $a^2b^2=\left(ab\right)^2=12$$a^2b^2=\left(ab\right)^2=12$
a2b2=(ab)2=12 cũng là số hữu tỉ
ủa !
tui làm đầy đủ mà sao nó chỗ hiện chỗ ko vậy
???????????????????????
luu thi thao ly Đọc bài giải không hiểu gì cả
xét xem các số a và b có thể là số vô tỉ hay khồn nếu :
a, ab và a/b là các số hữu tỉ
b, a+b và a/b là các số hữu tỉ ( a+b#0)
c, a+b , a^2 và b^2 là các số hữu tỉ ( a+b#0)
xét xem các số a và b có thể là số vô tỉ hay không nếu
a, ab và a/b là các số hữu tỉ
b, a+b và a/b là các số hữu tỉ (a+b #0)
c, a+b , a^2 và b^2 là các số hữu tỉ (a+b #0)
giúp mk nha cảm ơn các bn
Xét xem các số a,b có thể là số vô tỉ hay không nếu :
a+b và \(\dfrac{a}{b}\) là các số hữu tỉ ( a , b ≠ 0 )
Có thể, nếu \(a=-b\ne0\) thì \(a+b\) và \(\dfrac{a}{b}\) luôn hữu tỉ với mọi số thực
xét xem các số a,b có phải là số vô tỉ hay không nếu:
a) ab và a/b là các số hữu tỉ
b)a+b và a/b là các số hữu tỉ(a+b khác 0)
Xét xem các số a và b có thể là số vô tỉ hay không, nếu :
a, a + b và a - b là các số hữu tỉ
b, a - b và b là các số hữu tỉ
xin lỗi nhưng mk mới lớp 6 không thể giúp rồi
Xét xem các số a và b có thể là số vô tỉ hay không nếu a + b và a/b là các số hữu tỉ (a+b≠0 )
Bạn Edogawa đã có sự nhầm lẫn !
Mình sẽ cho bạn câu trả lời chính xác (đúng 100%) với ĐK bạn phải nhớ chọn câu trả lời hay nhất (đừng để câu hỏi chuyển sang giai đoạn bạn đọc bình chọn)
--------------------------------------...
a) Nếu ab và a/b là số hữu tỷ thì a và b có thể là số hữu tỷ hoặc vô tỷ.
...Chẳng hạn a = căn 2 ; b = 3 căn 2 => ab = 6; a/b = 1/3 (ab và a/b hữu tỷ nhưng a,b vô tỷ)
Chỗ này đúng không Việt?
jkytjkrli9otyijgkv;f8oyjitrynjh,gfd.sir9[e0ytug[fetcohv85ctjyhvgicfjaur9au[yagokfrkdkyhy
Xét xem các số a,b là các số vô tỉ hay không nếu: a) a.b là số hữu tỉ b) a+b và a/b là số hữu tỉ c) a.b, \(a^2\),\(b^2\)là số hữu tỉ
a/ Có thể là vô tỉ. Ví dụ: \(\hept{\begin{cases}a=\sqrt{2}\\b=\sqrt{2}\end{cases}}\)
b/ Không thể vì
Giả sử a, b là số vô tỷ
Nếu \(\frac{a}{b}\)là số hữu tỷ thì có dạng
\(\hept{\begin{cases}a=m.q\\b=n.q\end{cases}\left(m,n\in Q;q\in I\right)}\)
\(\Rightarrow a+b=m.q+n.q=q\left(m+n\right)\in I\)
Trái giả thuyết.
c/ Có thể Ví dụ: \(\hept{\begin{cases}a=\sqrt{2}\\b=\sqrt{2}\end{cases}}\)
xét xem các số x và y có thể là số vô tỉ không nếu biết : a) x + y và x - y đều là số hữu tỉ b) x + y và x/y đều số hữu tỉ
a) \(x=\frac{\left(x+y\right)+\left(x-y\right)}{2};y=\frac{\left(x+y\right)-\left(x-y\right)}{2}\)
Tổng, hiệu của hai số hữu tỉ là một số hữu tỉ . Thương của 1 số hữu tỉ với 1 số hữu tỉ ( khác 0 ) cũng là 1 số hữu tỉ.
Vậy x,y đều là các số hữu tỉ, không thể là số vô tỉ.
b) x và y có thể là số vô tỉ.
Ví dụ : x = \(-\sqrt{2}\); \(y=\sqrt{2}\)\(\Rightarrow x+y=-\sqrt{2}+\sqrt{2}=0\)
\(\Rightarrow\frac{x}{y}=\frac{-\sqrt{2}}{\sqrt{2}}=-1\)