Cho tam giác ABC có ba góc nhọn nt đg tròn (O) các đg cáo AI,BK của tam giác ABC cắt nhau tại H ( I thuộc BC , K thuộc Ac) AI và BK cắt đg tròn O lần lượt tại D và E
Cm CIHk nt
Tam giác CDE cân
Cho tam giác ABC có 3 góc đều nhọn, nội tiếp đường tròn (O), các đường cao AI và BK của tam giác cắt đường tròn tại H( I thuộc BC, K thuộc AC), AI, BK lần lượt cắt đường tròn (O) tại D, E. Cmr:
A. Tứ giác CIHK nội tiếp
B. Tam giác CBE cân
C. IK // DE
bài 8/77
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn ,các đường cao AI < BK của tam giác ABC cắt nhau tại H ( I thuộc BC , K thuộc AC ) .AI vad BK cắt đường tròn O lần lượt tại D và E
A/chứng minh tứ giác ABIK nội tiếp
B/ gọi M là trung điểm của DE . chứng minh 3 điểm O,M,C thẳng hàng
C/chứng mình IK song song ED
thankkkkk
a) Ta có: \(\angle AKB=\angle AIB=90\Rightarrow AKIB\) nội tiếp
b) Trong (O) có DE là dây cung không đi qua O và M là trung điểm DE
\(\Rightarrow OM\bot DE\)
CEAD nội tiếp \(\Rightarrow\angle CED=\angle CAD\)
CEBD nội tiếp \(\Rightarrow\angle CDE=\angle CBE\)
mà \(\angle CAD=\angle CBE\) (AKIB nội tiếp)
\(\Rightarrow\angle CED=\angle CDE\Rightarrow\Delta CDE\) cân tại C mà M là trung điểm DE
\(\Rightarrow CM\bot DE\Rightarrow C,O,M\) thẳng hàng
c) AKIB nội tiếp \(\Rightarrow\angle IKB=\angle IAB=\angle DAB=\angle DEB\)
\(\Rightarrow\) \(IK\parallel DE\)
cho tam giác ABC có 3 góc nhọn nội tiếp đg tròn tâm O kẻ các đg cao AF, CG của tam giác ABC (G thuộc AB, F thuộc BC) đg kính AD của đg tròn tâm O cắt BC tại E
1, chứng minh tứ giác AGFC nội tiếp 1 đg tròn
2, chứng minh EA.ED=EB.EC
3, gọi K và I lần lượt là hình chiếu vuông góc của F trên các cạnh CG và AC đg thẳng IK cắt cạnh AB tại H chứng minh HF\(\perp\)AB
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi AH, BK là đường cao của tam giác ABC (H thuộc BC; K thuộc AC). Các tia AH, BK lần lược cắt (O) tại các điểm thứ hai là D, E a)Trên hình vẽ có bao nhiêu tứ giác nội tiếp một đường tròn. Hãy chứng minh b Chứng minh rằng: góc AHC bằng Góc ADC.
a: A,E,D,B cùng thuộc (O)
=>AEDB nội tiếp
A,E,C,B cùng thuộc (O)
=>AECB nội tiếp
B,E,C,D cùng thuộc (O)
=>BECD nội tiếp
góc AHB=góc AKB=90 độ
=>AKHB nội tiếp
b: Đề sai rồi bạn
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O;R), có các đường cao AI, BK cắt nhau tại H. Hơn nữa, AI, BK cắt đường tròn (O) tương ứng D và E
a) Chứng minh tứ giác AKIB nội tiếp
b) Chứng minh : BHD là tam giác cân
a: Xét tứ giác AKIB có
góc AKB=góc AIB=90độ
=>AKIB là tứ giác nội tiếp
b: góc BHD=góc AHE=90 độ-góc HAC=90 độ-1/2*sđ cung CD
góc BDH=90 độ-góc IBD=90 độ-1/2*sđ cung CD
=>góc BHD=góc BDH
=>ΔBHD cân tại B
cho tam giác abc cân tại a nội tiếp đường tròn tâm o đường kính ad .các tiếp tuyến của đg tròn tại b và c cắt nhau tại k . gọi e là giao điểm của ac và bk . chứng minh rằng : bốn điểm a ,b,k,e cùng thuộc 1 đường tròn
cho tam giasc ABC nhọn, đường tròn (O) đường kính BC cắt AB,AC lần lượt tại D và E. CE cắt BD tại H
a, Chứng minh ADHE nt
b, AH cắt BC tại F. CM FA là p/g của góc DFE (phần này không cần giải đâu vì mình cm rồi)
c, EF cắt đg tròn tại K. CM DK//AF
d, Cho gics BCD = 45 độ, BC = 4cm. Tính S tam giác ABC
Cám ơn đã giúp đỡ <333
vẽ hình đi ko khó đâu ko dc cho mk hình mk giải cho
cho tam giác ABC nhọn,đg tròn đg kính AB cắt AC,BC lần lượt tại D và E. gọi H là giao điểm của AE và BD.
Cmr:4 điểm C, D, H ,E cùng thuộc 1 đường tròn