Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệu Hường
Xem chi tiết
Đăng Nguyễn Hữu
Xem chi tiết
Tuyến Phùng
Xem chi tiết
Chinh
31 tháng 5 2016 lúc 13:46

Từ Phương trình hoành độ giao điểm sẽ tìm được tọa độ của A ( x1,y1) và B (x2 , y2)

Bạn Vẽ hình . Gọi M là hình chiếu của A trên Ox , N là Hình chiếu của B trên Ox . tiếp theo bạn tính lần lượt các diện tích sau.:

1. S tam giác AMO vuông tại M

2. S tam giác BNO vuông tại N 

3. S Hình Thang  AMNB .

=> S tam giác AOB = S Hình thang AMNB -  ( S tam giác AMO + S tam giác BNO)

Tú72 Cẩm
Xem chi tiết
Nguyễn Đức Trí
18 tháng 9 2023 lúc 14:17

1) \(\left\{{}\begin{matrix}\left(d_1\right):y=2x\\\left(d_2\right):y=-\dfrac{1}{2}x+5\end{matrix}\right.\)

loading...

2) Theo đồ thi ta có :

\(\left(d_1\right)\cap\left(d_2\right)=A\left(2;4\right)\)

3) \(\left(d_2\right)\cap Ox=B\left(a;0\right)\)

\(\Leftrightarrow-\dfrac{1}{2}a+5=0\)

\(\Leftrightarrow\dfrac{1}{2}a=5\)

\(\Leftrightarrow a=10\)

\(\Rightarrow\left(d_2\right)\cap Ox=B\left(10;0\right)\)

4) \(OA=\sqrt[]{\left(2-0\right)^2+\left(4-0\right)^2}=\sqrt[]{20}=2\sqrt[]{5}\)

   \(OB=\sqrt[]{\left(10-0\right)^2+\left(0-0\right)^2}=\sqrt[]{10^2}=10\)

  \(AB=\sqrt[]{\left(10-2\right)^2+\left(0-4\right)^2}=\sqrt[]{80}=4\sqrt[]{5}\)

Ta thấy :

 \(OA^2+AB^2=20+80=OB^2=100\)

\(\Rightarrow\Delta OAB\) vuông tại A

\(\Rightarrow\widehat{OAB}=90^o\)

\(sin\widehat{AOB}=\dfrac{AB}{OB}=\dfrac{4\sqrt[]{5}}{10}=\dfrac{2\sqrt[]{5}}{5}\)

\(\Rightarrow\widehat{AOB}\sim63,43^o\)

\(\Rightarrow\widehat{OBA}=90^o-63,43^o=26,57^o\)

5) Chu vi \(\Delta OAB\) :

\(AB+OA+OB=4\sqrt[]{5}+2\sqrt[]{5}+10=10\sqrt[]{5}+10=10\left(\sqrt[]{5}+1\right)\left(đvmd\right)\)

Diện tích \(\Delta OAB\) :

\(\dfrac{1}{2}AB.OA=\dfrac{1}{2}.4\sqrt[]{5}.2\sqrt[]{5}=20\left(đvdt\right)\)

Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 12 2023 lúc 22:12

a: loading...

b: Phương trình hoành độ giao điểm là:

\(2x+7=-\dfrac{1}{2}x+2\)

=>\(2x+\dfrac{1}{2}x=2-7=-5\)

=>2,5x=-5

=>x=-2

Thay x=-2 vào y=2x+7, ta được:

\(y=2\cdot\left(-2\right)+7=7-4=3\)

Vậy: A(-2;3)

c: Tọa độ B là:

\(\left\{{}\begin{matrix}y=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x=-3,5\end{matrix}\right.\)

Tọa độ C là:

\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=4\end{matrix}\right.\)

Vậy: C(4;0)

A(-2;3); B(-3,5;0); C(4;0)

\(AB=\sqrt{\left(-3,5+2\right)^2+\left(0-3\right)^2}=\dfrac{3\sqrt{5}}{2}\)

\(AC=\sqrt{\left(4+2\right)^2+\left(0-3\right)^2}=3\sqrt{5}\)

\(BC=\sqrt{\left(4+3,5\right)^2+\left(0-0\right)^2}=7,5\)

Vì \(AB^2+AC^2=BC^2\)

nên ΔABC vuông tại A

=>\(\widehat{BAC}=90^0\)

Xét ΔABC vuông tại A có \(sinABC=\dfrac{AC}{BC}=\dfrac{3\sqrt{5}}{7,5}\)

=>\(\widehat{ABC}\simeq63^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}=90^0-63^0=27^0\)

d: Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=\dfrac{3\sqrt{5}}{2}+3\sqrt{5}+7,5=\dfrac{9\sqrt{5}+15}{2}\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot\dfrac{3\sqrt{5}}{2}\cdot3\sqrt{5}=\dfrac{45}{4}\)

Bùi
Xem chi tiết
Minh Triều
4 tháng 5 2016 lúc 20:43

a) dễ

b)phương trình hoành độ  giao điểm

Nguyễn Tuấn
4 tháng 5 2016 lúc 21:18

a) tự vẽ

b) pt hoành độ

x^2=x+2

giải ra được x1=...;x2=,,,,,

thay x1=...;x2=... vô y=x^2

ta được y1=...;y2=...

ta được A;B có vị trí A(x1;y1);B(x2;y2)

Haley
Xem chi tiết
Haley
28 tháng 1 2018 lúc 21:17

Tìm tọa độ trung điểm của AB là C (a;b) ạ 

Thảo Thanh
Xem chi tiết
Trần Minh Thư
Xem chi tiết
Nguyễn Huy Tú
7 tháng 3 2022 lúc 14:20

a, bạn tự vẽ 

b, Hoành độ giao điểm tm pt 

\(\dfrac{x^2}{2}=\dfrac{x}{2}+3\Leftrightarrow x^2-x-6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow x=3;x=-2\)

hay \(x_A=3;x_B=-2\)

\(\Rightarrow y_A=\dfrac{9}{2};y_B=2\)

Vậy (P) cắt (d) tại A(3;9/2) ; B(-2;2) 

c, Ta có \(AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}=\dfrac{5\sqrt{5}}{2}\)

Theo Pytago ta có \(OA=\sqrt{\left(\dfrac{9}{2}\right)^2+3^2}=\dfrac{3\sqrt{13}}{2}\)

Theo Pytago ta có \(OB=\sqrt{2^2+2^2}=2\sqrt{2}\)

Chu vi tam giác ABC là 

\(AB+OA+OB=\dfrac{5\sqrt{5}+3\sqrt{13}+4\sqrt{2}}{2}\)