Cho (P)y=2\(x^2\) và (d)y=2x+4. Gọi A và B là giao điểm của (d) và (P). Tính S△AOB
Trêm mp tọa độ Oxy cho (d) y=-x+6 và (P) y=x2
a, Tìm tọa độ giao điểm (d) và (P)
b, Gọi A,B là 2 giao điểm của (d) và (P) . Tính S tam giác AOB
Cho (P) :y=x^2 và (d) :y=b . Gọi A và B là giao điểm của (P) và(d) . Tim b để tam giác AOB=8
Cho các hàm số y= 2x2 có đồ thị là (P) và y = 2x + 4 có đồ thị là (d).
a) Vẽ P và d trên cùng một hệ trục tọa độ vuông góc (đơn vị trên các trục bằng nhau) (Làm rồi)
b) xác định tọa độ giao điểm của P và d bằng phép tính. ( Làm rồi)
c) Gọi A,B là hai giao điểm (P) và (d), tính diện tích tam giác AOB. (Chưa làm được)
Từ Phương trình hoành độ giao điểm sẽ tìm được tọa độ của A ( x1,y1) và B (x2 , y2)
Bạn Vẽ hình . Gọi M là hình chiếu của A trên Ox , N là Hình chiếu của B trên Ox . tiếp theo bạn tính lần lượt các diện tích sau.:
1. S tam giác AMO vuông tại M
2. S tam giác BNO vuông tại N
3. S Hình Thang AMNB .
=> S tam giác AOB = S Hình thang AMNB - ( S tam giác AMO + S tam giác BNO)
Cho (d1): y=2x và (d2):y= -1/2x + 5 1/ vẽ d1 và d2 trên cùng mặt phẳng tọa độ 2/ xác định tọa độ giao điểm A của d1 và d2 3/ gọi giao điểm của d2 với Ox là B. Tính các góc của tam giác AOB 4/ tính chu vi và diện tích của tam giác AOB
1) \(\left\{{}\begin{matrix}\left(d_1\right):y=2x\\\left(d_2\right):y=-\dfrac{1}{2}x+5\end{matrix}\right.\)
2) Theo đồ thi ta có :
\(\left(d_1\right)\cap\left(d_2\right)=A\left(2;4\right)\)
3) \(\left(d_2\right)\cap Ox=B\left(a;0\right)\)
\(\Leftrightarrow-\dfrac{1}{2}a+5=0\)
\(\Leftrightarrow\dfrac{1}{2}a=5\)
\(\Leftrightarrow a=10\)
\(\Rightarrow\left(d_2\right)\cap Ox=B\left(10;0\right)\)
4) \(OA=\sqrt[]{\left(2-0\right)^2+\left(4-0\right)^2}=\sqrt[]{20}=2\sqrt[]{5}\)
\(OB=\sqrt[]{\left(10-0\right)^2+\left(0-0\right)^2}=\sqrt[]{10^2}=10\)
\(AB=\sqrt[]{\left(10-2\right)^2+\left(0-4\right)^2}=\sqrt[]{80}=4\sqrt[]{5}\)
Ta thấy :
\(OA^2+AB^2=20+80=OB^2=100\)
\(\Rightarrow\Delta OAB\) vuông tại A
\(\Rightarrow\widehat{OAB}=90^o\)
\(sin\widehat{AOB}=\dfrac{AB}{OB}=\dfrac{4\sqrt[]{5}}{10}=\dfrac{2\sqrt[]{5}}{5}\)
\(\Rightarrow\widehat{AOB}\sim63,43^o\)
\(\Rightarrow\widehat{OBA}=90^o-63,43^o=26,57^o\)
5) Chu vi \(\Delta OAB\) :
\(AB+OA+OB=4\sqrt[]{5}+2\sqrt[]{5}+10=10\sqrt[]{5}+10=10\left(\sqrt[]{5}+1\right)\left(đvmd\right)\)
Diện tích \(\Delta OAB\) :
\(\dfrac{1}{2}AB.OA=\dfrac{1}{2}.4\sqrt[]{5}.2\sqrt[]{5}=20\left(đvdt\right)\)
Cho 2 hàm số
(d₁): y = \(2x+7\)
(d₂): y = \(-\dfrac{1}{2}x+2\)
a) Vẽ 2 đồ thị trên cùng một mặt phẳng.
b) Tìm tọa độ giao điểm A của (d₁) và (d₂).
c) Gọi giao điểm của (d₁) và (d₂) với Ox lần lượt là B và C. Tính các góc ∆ABC.
d) Tính chu vi và diện tích ∆ABC
a:
b: Phương trình hoành độ giao điểm là:
\(2x+7=-\dfrac{1}{2}x+2\)
=>\(2x+\dfrac{1}{2}x=2-7=-5\)
=>2,5x=-5
=>x=-2
Thay x=-2 vào y=2x+7, ta được:
\(y=2\cdot\left(-2\right)+7=7-4=3\)
Vậy: A(-2;3)
c: Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x=-3,5\end{matrix}\right.\)
Tọa độ C là:
\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=4\end{matrix}\right.\)
Vậy: C(4;0)
A(-2;3); B(-3,5;0); C(4;0)
\(AB=\sqrt{\left(-3,5+2\right)^2+\left(0-3\right)^2}=\dfrac{3\sqrt{5}}{2}\)
\(AC=\sqrt{\left(4+2\right)^2+\left(0-3\right)^2}=3\sqrt{5}\)
\(BC=\sqrt{\left(4+3,5\right)^2+\left(0-0\right)^2}=7,5\)
Vì \(AB^2+AC^2=BC^2\)
nên ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)
Xét ΔABC vuông tại A có \(sinABC=\dfrac{AC}{BC}=\dfrac{3\sqrt{5}}{7,5}\)
=>\(\widehat{ABC}\simeq63^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-63^0=27^0\)
d: Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=\dfrac{3\sqrt{5}}{2}+3\sqrt{5}+7,5=\dfrac{9\sqrt{5}+15}{2}\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot\dfrac{3\sqrt{5}}{2}\cdot3\sqrt{5}=\dfrac{45}{4}\)
Cho hàm số y=x^2 có đồ thị (P) và hàm số y=x+2 có đồ thi (d)
a/ Vẽ (P) và (d) trên cùng 1 trục tọa độ Oxy
b/ Gọi A và B là hai giao điểm của (P) và (d). Bằng phép tính hãy tìm tọa độ của A và B.Tính diện tích của tam giác AOB
a) tự vẽ
b) pt hoành độ
x^2=x+2
giải ra được x1=...;x2=,,,,,
thay x1=...;x2=... vô y=x^2
ta được y1=...;y2=...
ta được A;B có vị trí A(x1;y1);B(x2;y2)
Giúp em với ạ !!
Cho parabol P y=x^2 và đường thẳng (d): y=2x+3. Gọi A và B là hai giao điểm của P và (d). Tọa độ giao điểm của AB là ?
cho hai đường thẳng y=2x+4 (d) và y= -x+3 (d')
a) vẽ (d) và (d') trên cùng một mặt phẳng tọa độ
b) gọi A là giao điểm (d) và (d'). tìm tọa độ giao điểm A (bằng phép tính)
c) cho hàm số y= (m-2)x+m-3 có đồ thị là (p), với m là là số thực cho trước. tìm các giá trị của m để (p) song song với (d)
Cho(ρ) y= \(\dfrac{x^2}{2}\)
(d) y= \(\dfrac{x}{2}+3\)
a/ Vẽ (p) và(d)
b/ Tìm tọa độ giao điểm A và B của (p) và (d) với \(x_A>0;x_B< 0\)
c/ Tính chu vi △AOB
a, bạn tự vẽ
b, Hoành độ giao điểm tm pt
\(\dfrac{x^2}{2}=\dfrac{x}{2}+3\Leftrightarrow x^2-x-6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow x=3;x=-2\)
hay \(x_A=3;x_B=-2\)
\(\Rightarrow y_A=\dfrac{9}{2};y_B=2\)
Vậy (P) cắt (d) tại A(3;9/2) ; B(-2;2)
c, Ta có \(AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}=\dfrac{5\sqrt{5}}{2}\)
Theo Pytago ta có \(OA=\sqrt{\left(\dfrac{9}{2}\right)^2+3^2}=\dfrac{3\sqrt{13}}{2}\)
Theo Pytago ta có \(OB=\sqrt{2^2+2^2}=2\sqrt{2}\)
Chu vi tam giác ABC là
\(AB+OA+OB=\dfrac{5\sqrt{5}+3\sqrt{13}+4\sqrt{2}}{2}\)