Tìm x
(4x-3)-(x-5)=(x+2)-2(x-10)
Tìm x
2(4x-3)-3(x+5)+4(x-10) =5(x+2)
⇒ 8x - 6 - 3x - 15 + 4x - 40 = 5x + 10
⇒ 9x - 61 = 5x + 10
⇒ 4x = 71
⇒ x = 17,7
\(\Rightarrow\) 8x - 6 - 3x - 15 + 4x - 40 = 5x + 10
\(\Rightarrow\) 9x - 61 = 5x + 10
\(\Rightarrow\) 4x = 71
\(\Rightarrow\) x = 17,75
⇒ 8x - 6 - 3x - 15 + 4x - 40 = 5x + 10
⇒ 9x - 61 = 5x + 10
⇒ 4x = 71
⇒ x = 17,7
Tìm x biết; (4x-3)-(x+5)=(x+2)-2*(x+10)
tìm x biết (4x-3)-(x+5) = (x+2)-2(x-10)
(4x-3)-(x+5)=(x+2)-2(x-10)
\(\Rightarrow4x-3-x-5=x+2-2x+10\)
\(\Rightarrow4x-x-2x=2+10+3+5\)
\(\Rightarrow x=20\)
Cho M(x) = 2x^5 - 4x^3 + 2x^2 + 10x - 1
và N(x) = -2x^5 + 2x^4 + 4x^3 + x^2 + x - 10
a/. Tính M(x) + N(x)
b/. Tìm A(x), biết A(x) + M(x) = N(x)
a/Ta có: M(x)+N(x) = (2x5 - 4x3 + 2x2 + 10x - 1) + (-2x5 + 2x4 + 4x3 + x2 + x - 10)
= 2x5 - 2x5 - 4x3 + 4x3 + 2x4 + 2x2 + x2 + 10x + x -1 - 10
= 2x4 + 3x2 + 11x - 11
b/ Ta có: A(x) = N(x)-M(x) = (-2x5 + 2x4 + 4x3 + x2 + x - 10) - (2x5 - 4x3 + 2x2 + 10x - 1)
= -2x5 - 2x5 + 2x4 + 4x3 + 4x3 + x2 - 2x2 + x - 10x -10 + 1
= -2x5 + 2x4 + 8x3 - x2 - 9x -9
Tìm x, biết:
1) 2x . (x-5) -x . (2x-4) = 15
2) (x+1) . (x+2) - (x+4) . (x+3) = 6
3) 4x2 - 4x+5 - x . (4x-3) = 1-2x
4) (x+3) . (2x+1) - 2x2 = 4x-5
5) -4 . (2x-8) + (2x-1) . (4x+3) = 0
6) -3 . (x-2) + 4 . (2x-6) - 7 . (x-9)= 5 . (3-2)
7) (x-2) . (x+2) -2 . (x-4) = 10. 3x
8) 15x . (x-2) - (5x-1) . (3x + 1) = 6
9) (2x+4) . (x-3) - x . (2x-10) =15-20x
10) (4x-2) . (3x+4) - (2x-1) . (6x+5) = 100
HEPL ME !!! Cần làm gấp những bài này, ai lm dc mk tick cho ng đó nha !!! THANK YOU !!!!
Tìm x, biết:
1) 2x ( x - 5) - x ( 2x - 4 ) = 15
<=> 2x2 - 10x - 2x2 + 4x - 15 = 0
<=> -6x - 15 = 0
<=> -6x = 15
<=> x = -15/6
2) ( x +1)( x + 2 ) - ( x + 4 ) ( x + 3 ) = 6
<=> x2 + 2x + x + 2 - x2 - 3x - 4x - 12 - 6 = 0
<=> -4x = -16
<=> x = 4
3) 4x2 - 4x + 5 - x ( 4x - 3) = 1 - 2x
<=> 4x2 - 4x + 5 - 4x2 + 3x - 1 + 2x = 0
<=> x + 4 = 0
<=> x = -4
4) ( x + 3 ) ( 2x + 1 ) - 2x2 = 4x - 5
<=> 2x2 + x + 6x + 3 - 2x2 - 4x + 5 = 0
<=> 3x + 8 = 0
<=> 3x = -8
<=> x = -8/3
5) -4 ( 2x - 8 ) + ( 2x - 1 )( 4x + 3 ) = 0
<=> - 8x + 32 + 8x2 + 6x - 4x - 3 = 0
.......
6) -3 . (x-2) + 4 . (2x-6) - 7 . (x-9)= 5 . (3-2)
<=> -3x + 6 + 8x - 24 - 7x + 63 - 5 = 0
<=> -2x + 40 = 0
<=> -2x = -40
<=> x = 20
Còn lại tương tự ....
tìm x a) (8x+2) (1-3x)+(6x -1)(4x-10)=-50
b) (1 -4x)(x-1)+4(3x+2)(x+3)=38
c)5(2x+3)(x+2)- 2.(5x-4)(x-1)=75
hộ mk vs ạ
a: ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)
\(\Leftrightarrow-62x=-92\)
hay \(x=\dfrac{46}{31}\)
b: ta có: \(\left(1-4x\right)\left(x-1\right)+4\left(3x+2\right)\left(x+3\right)=38\)
\(\Leftrightarrow x-1-4x^2+4x+4\left(3x^2+9x+2x+6\right)=38\)
\(\Leftrightarrow-4x^2+5x-1+12x^2+44x+24-38=0\)
\(\Leftrightarrow8x^2+49x-15=0\)
\(\text{Δ}=49^2-4\cdot8\cdot\left(-15\right)=2881\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-49-\sqrt{2881}}{16}\\x_2=\dfrac{-49+\sqrt{2881}}{16}\end{matrix}\right.\)
Bài 2: Tìm x
a) 5 ( x + 7 ) - 10 = 23 . 5
b) 26 + ( 5 + x ) 34
c) 42 . 2 . ( x + 2 ) = 4
d) 4x – 2 . 42 = 64
e) x + 2 . x + 3 . x + ….. + 100 . x = 10100
f ) ( x + 17 ) : 21 – 3 = 7
a) 5(x+7) - 10 = 2^3 . 5
5(x+7 ) -10 = 8 . 5 = 40
5(x+7) = 40 + 10 = 50
x + 7 = 50 : 5 = 10
x = 10 - 7 = 3
b) 2^6 + ( 5 + x ) = 3^4
64 + ( 5 + x ) = 81
5 + x = 81 - 64 = 17
x = 17 - 5 = 12
Tìm giá trị lớn nhất hoặc nhỏ nhấtcủa các đa thức dưới đây:
1> 3x-x^2
2> -(x^2+y^2) + x+3y+10
3> x^2+4x-2
4> -x^2+6x+5
5> -2x^2+4x+5
6> -2x^2-2y^2+2x+2y+15
7> -x^2-4x
8> 4x-x^2-1
9> 5-x^2+2x+4y^2-4y
10> x^2-4x+y^2-8y+6
11> (x-3)(x+5)+4
1) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4
Ta luôn có: -(x - 3/2)2 \(\le\)0 \(\forall\)x
=> -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của 3x - x2 là 9/4 tại x = 3/2
2) Ta có : -(x2 + y2) + x + 3y+ 10 = -x2 - y2 + x + 3y + 10 = -(x2 - x + 1/4) - (y2 -3y + 9/4) + 25/2 = -(x - 1/2)2 - (y - 3/2)2 + 25/2
Ta luôn có: -(x - 1/2)2 \(\le\)0 \(\forall\)x
-(y - 3/2)2 \(\le\)0 \(\forall\)y
=> -(x - 1/2)2 - (y - 3/2)2 + 25/2 \(\le\)25/2 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{3}{2}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{2}\end{cases}}\)
Vậy ...
Bài 1: Tìm x
a. (-20) + x = -30 b. (-10) - x = -20
c. -10 + (-2) = -4 d. x + (-3) = -7
e. x - (-5) = -9 f. x (-11) = 12
h. 2x - 10 = 20 l. 4x - 8 = -8
k. -12 - (-2)x = -8
Bài 2: Tìm x
a. -20 - (10-x) = -3
b. 14 + (14-x) = -2
c. -15 - (x-3) = -7
d. (x+4) + (-20) = -8
e. -2x - 2 = -4
f. -2x + 4 = -4
l. -12 - (-2)x = -2 -4
Thank mn ạaa!!
Bài 1:
a. $(-20)+x=-30$
$x-20=-30$
$x=-30+20=-(30-20)=-10$
b.
$(-10)-x=-20$
$x=(-10)-(-20)=-10+20=20-10=10$
c. Đề sai. Bạn xem lại.
d.
$x+(-3)=-7$
$x=-7-(-3)=-7+3=-(7-3)=-4$
e.
$x-(-5)=-9$
$x=(-9)+(-5)=-14$
f.
$x(-11)=12$
$x=\frac{12}{-11}=\frac{-12}{11}$
h.
$2x-10=20$
$2x=20+10=30$
$x=30:2=15$
l.
$4x-8=-8$
$4x=-8+8=0$
$x=0:4=0$
k.
$-12-(-2)x=-8$
$(-2)x=-12-(-8)=-12+8=-(12-8)=-4$
$x=(-4):(-2)=2$
Bài 2:
a. $-20-(10-x)=-3$
$10-x=-20-(-3)=-20+3=-(20-3)=-17$
$x=10-(-17)=10+17=27$
b.
$14+(14-x)=-2$
$14-x=-2-14=-16$
$x=14-(-16)=14+16=30$
c.
$-15-(x-3)=-7$
$x-3=-15-(-7)=-15+7=-8$
x=-8+3=-5$
d.
$(x+4)+(-20)=-8$
$x+4=-8-(-20)=-8+20=12$
$x=12-4=8$
e.
$-2x-2=-4$
$-2x=-4+2=-2$
$x=(-2):(-2)=1$
f.
$-2x+4=-4$
$-2x=-4-4=-8$
$x=(-8):(-2)=4$
l.
$-12-(-2)x=-2-4=-6$
$(-2)x=-12-(-6)=-12+6=-6$
$x=(-6):(-2)=3$
1.Tìm x
a) 5.(x^2-3x+1)+x.(1-5x)=x-2
b)3x.\(\left(\frac{4}{3}+1\right)\)-4x.(x-2)=10
c)12x^2-4x.(3x-5)=10x-17
d) 4x(x-5)-7x.(x-4)+3x^2=12
a) 5.(x^2-3x+1)+x.(1-5x)=x-2
\(\Leftrightarrow5x^2-15x+5+x-5x^2=x-2\)
\(\Leftrightarrow-14x-x=-2-5\)
\(\Leftrightarrow-15x=-7\)
\(\Leftrightarrow x=\frac{7}{15}\)
b\(,3x.\left(\frac{4}{3}+1\right)-4x\left(x-2\right)=10\)
\(\Leftrightarrow4x+3x-4x^2+8x-10=0\)
\(\Leftrightarrow-4x^2+15x-10=0\)
Đề sai???
\(c,12x^2-4x\left(3x-5\right)=10x-17\)
\(\Leftrightarrow12x^2-12x^2+20x-10x=-17\)
\(\Leftrightarrow10x=-17\)
\(\Leftrightarrow x=-\frac{17}{10}\)
\(d,4x\left(x-5\right)-7x\left(x-4\right)+3x^2=12\)
\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=12\)
\(\Leftrightarrow8x=12\)
\(\Leftrightarrow x=\frac{3}{2}\)