tìm GTNN của |x-2|+|x-9|+|x+2020|
Tìm GTNN của biểu thức C=(x-9)2020+4(y-3)30-25
Lời giải:
Ta thấy: $(x-9)^{2020}=[(x-9)^{1010}]^2\geq 0$ với mọi $x$
$(y-3)^{30}=[(y-3)^{15}]^2\geq 0$ với mọi $y$
$\Rightarrow C\geq 0+4.0-25=-25$
Vậy GTNN của $C$ là $-25$. Giá trị này đạt tại $x-9=y-3=0$
$\Rightarrow x=9; y=3$
Tìm GTNN của A và tìm x khi A đạt GTNN biết A =|x-2018|+|x-2020|+|x-2022|
Lời giải:
Sử dụng BĐT sau:
Cho $a,b$ thực. Khi đó $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$. Áp dụng vào bài toán:
$|x-2018|+|x-2022|=|x-2018|+|2022-x|\geq |x-2018+2022-x|=4$
$|x-2020|\geq 0$ (theo tính chất trị tuyệt đối)
$\Rightarrow A\geq 4+0=4$
Vậy GTNN của $A$ là $4$. Giá trị này đạt được khi $(x-2018)(2022-x)\geq 0$ và $x-2020=0$
Hay khi $x=2020$
@Vũ Văn Tuần:
Để biết vì sao $|a|+|b|\geq |a+b|$ đạt dấu "=" khi $ab\geq 0$ thì bạn đi chứng minh BĐT này thôi.
Xét các TH sau:
TH1: Ít nhất 1 trong 2 số bằng 0. Không mất tính tổng quát giả sử $a=0$. Khi đó: $|a|+|b|=|b|=|b+0|=|a+b|$
TH2: $a,b$ đều khác 0. Xét các TH nhỏ hơn:
TH2.1: $a,b$ cùng dương kéo theo $a+b$ dương. Khi đó:
$|a|=a; |b|=b; |a+b|=a+b$
$\Rightarrow |a|+|b|=|a+b|$
TH2.2: $a,b$ cùng âm thì kéo theo $a+b<0$ Khi đó:
$|a|=-a; |b|=-b; |a+b|=-(a+b)$
$\Rightarrow |a|+|b|=-a+(-b)=-(a+b)=|a+b|$
TH2.3: $a,b$ khác dấu. Không mất tính tổng quát giả sử $a$ dương $b$ âm.
$\Rightarrow |a|=a; |b|=-b$
Nếu $a+b\geq 0$ thì $|a+b|=a+b$
$\Rightarrow |a|+|b|-|a+b|=a+(-b)-(a+b)=-2b>0$ do $b<0$
$\Rightarrow |a|+|b|> |a+b|$
Nếu $a+b<0$ thì $|a+b|=-(a+b)$
$\Rightarrow |a|+|b|-|a+b|=a+(-b)--(a+b)=a+(-b)+a+b=2a> 0$ do $a>0$
$\Rightarrow |a|+|b|> |a+b|$
Từ các TH đã xét ta suy ra $|a|+|b|\geq |a+b|$
Dấu "=" xảy ra khi $a,b$ cùng dương, $a,b$ cùng âm hoặc ít nhất 1 trong 2 số $a,b$ bằng $0$
Tức là $ab\geq 0$
Tìm GTNN của:
\(B=\dfrac{\left(x+2020\right)^2}{x}\left(x>0\right)\)
Áp dụng: \(\left(a+b\right)^2\ge4ab\)
\(B=\dfrac{\left(x+2020\right)^2}{x}\ge\dfrac{4.2020.x}{x}=8080\)
\(B_{min}=8080\) khi \(x=2020\)
tìm GTNN của bt : I x - 1 I + 2020 I x - 2 I + I x - 3 I
`|x-1|+2020|x-2|+|x-3|`
`=|x-1|+|3-x|+2020|x-2|`
Áp dụng BĐT `|A|+|B|>=|A+B|`
`=>|x-1|+|3-x|>=|x-1+3-x|=2`
Mà `|x-2|>=0=>2020|x-2|>=0`
`=>|x-1|+2020|x-2|+|x-3|>=2`
Dấu "=" xảy ra khi $\begin{cases}(x-1)(3-x) \ge 0\\x-2=0\\\end{cases}$
`<=>` $\begin{cases}(x-1)(x-3) \le 0\\x=2\\\end{cases}$
`<=>` $\begin{cases}1 \le x \le 3\\x=2\\\end{cases}$
`<=>x=2`
Giúp mik với nha <33333
Tìm GTNN của :
E= |x-1|+|x-9|
A=2016 - (x+1)^2
C=-2020-|x-1|-(y-1)^2
cái thứ 2 có min đâu bạn ơi?,cả thứ 3 nữa
\(E=\left|x-1\right|+\left|x-9\right|\)
\(E=\left|x-1\right|+\left|9-x\right|\ge\left|x-1+9-x\right|=8\)
Min E = 8
\(\Leftrightarrow1\le x\le9\)
\(A=2016-\left(x+1\right)^2\le2016\)
Max A = 2016
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
P/s : Cái này làm gì có Min ??
TÌm GTNN của biểu thức : C = I x + 2 I + I x - 4 I + 2020
`C=|x+2|+|x-4|+2020`
`=|x+2|+|4-x|+2020`
Áp dụng BĐT `|A|+|B|>=|A+B|`
`=>|x+2|+|4-x|>=|x+2+4-x|=6`
`=>C>=2020+6=2026`
Dấu "=" xảy ra khi `(x+2)(4-x)>=0<=>(x+2)(x-4)<=0<=>-2<=x<=4`
C=|x+2|+|x−4|+2020C=|x+2|+|x-4|+2020
=|x+2|+|4−x|+2020=|x+2|+|4-x|+2020
Áp dụng BĐT |A|+|B|≥|A+B||A|+|B|≥|A+B|
⇒|x+2|+|4−x|≥|x+2+4−x|=6⇒|x+2|+|4-x|≥|x+2+4-x|=6
⇒C≥2020+6=2026⇒C≥2020+6=2026
Dấu "=" xảy ra khi (x+2)(4−x)≥0⇔(x+2)(x−4)≤0⇔−2≤x≤4(x+2)(4-x)≥0⇔(x+2)(x-4)≤0⇔-2≤x≤4
a, cho x=\(\sqrt{2+\sqrt{3}}\) + \(\sqrt{2-\sqrt{3}}\) và y=\(\sqrt{7-2\sqrt{6}}\)
tính giá trị của biểu thức P=\(\left(x-y\right)^{2020}\)
b, tìm GTNN của B=\(x-\sqrt{x-2020}\)
\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)
\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)
\(\Rightarrow x-y=1\Rightarrow P=1\)
\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)
\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)
\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)
Tìm GTNN của M
M= |x-2020|+|x-2021|+|x-2022|
M= /x-2020/ + /x-2022/
Tìm gtnn của x ạ .