Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Bảo Linh
Xem chi tiết
Dũng Senpai
31 tháng 7 2016 lúc 22:46

n và n+1 là 2 số tự nhiên liên tiếp nên 1 số chia hết cho 2.

n;n+1;n+2.

1 trong 3 số chia hết cho 3 nếu n hay n+1 chia hết cho 3 thì bài toán coi như xong.

Nếu n+2 chia hết cho 3.

2n;2n+1;2n+2.

1 số chia hết cho 3.

n ko chia hết cho 3 theo giả thuyết nên 2 n ko chia hết cho 3.

n+1 cũng vậy suy ra 2n+2 ko chia hết cho 3.

Vậy 2n+1 chia hết cho 3.

Vậy biếu thức trên lun chia hết cho 6.

Chúc chị học tốt^^

soyeon_Tiểu bàng giải
31 tháng 7 2016 lúc 22:46

+ Nếu n chia hết cho 3 => n(n + 1).(2n + 1) chia hết cho 3

+ Nếu n chia 3 dư 1 => 2n chia 3 dư 2 => 2n + 1 chia hết cho 3 => n(n + 1)(2n + 1) chia hết cho 3

+ Nếu n chia 3 dư 2 => n + 1 chia hết cho 3 => n(n + 1)(2n + 1) chia hết cho 3

=> n(n + 1)(2n + 1) luôn chia hết cho 3 (1)

Mà n.(n + 1) là tích 2 số tự nhiên liên tiếp => n(n + 1) chia hết cho 2 => n(n + 1)(2n + 1) chia hết cho 2 (2)

Từ (1) và (2), do (2;3)=1 => n(n + 1)(2n + 1) chia hết cho 6 (đpcm)

alibaba nguyễn
1 tháng 8 2016 lúc 5:45
Bài toán = 2n^3+3n^2+n=3n^2+3n^3+n(n+1)(n-1) Ta thấy 3n^2,3n^3,và n(n+1)(n-1) đều chia hết cho 3 nên đa thức chia hết cho ba bên cạnh đa thì đa thức lại chia hết cho 2 nên đa thức chia hết cho 6
phan thanh ngan
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2020 lúc 12:51

a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

phan thanh ngan
30 tháng 8 2020 lúc 12:00
https://i.imgur.com/VAewh4D.jpg
phan thanh ngan
31 tháng 8 2020 lúc 11:56

Giúp mik vs ạ.Mik đag cần

Nguyễn Trúc Phương
Xem chi tiết
Nguyễn Vũ Phương Thảo
16 tháng 11 2021 lúc 14:20

4333344

Khách vãng lai đã xóa
Vũ Tuấn Khôi Nguyên
21 tháng 1 2022 lúc 12:19

?reeeeeeeeeeee

Khách vãng lai đã xóa
Võ Đường Ngọc Hòa TV
10 tháng 3 2022 lúc 17:26

Ủa, cái số gì đây??????

Khách vãng lai đã xóa
Dương Hồng Bảo Phúc
Xem chi tiết
Nguyễn Thị Thương Hoài
13 tháng 11 2023 lúc 14:53

1.A = 21 + 22 + 23 + 24 + ... + 259 + 260

Xét .dãy số: 1; 2; 3; 4; .... 59; 60 Dãy số này có 60 số hạng vậy A có 60 hạng tử.

vì 60 : 2 = 30 nên nhóm hai số hạng liên tiếp của A vào một nhóm thì ta được:

A = (21 + 22) + (23 + 24) +...+ (259 + 260)

A = 2.(1 + 2) + 23.(1 +2) +...+ 259.(1 +2)

A =2.3 + 23.3  + ... + 259.3

A =3.( 2 + 23+...+ 259)

Vì 3 ⋮ 3 nên A = 3.(2 + 23 + ... + 259)⋮3 (đpcm)

 

 

 

sdjo
13 tháng 11 2023 lúc 14:01

áp dụng công thức là ra :))))

Nguyễn Thị Thương Hoài
13 tháng 11 2023 lúc 14:26

2, M = 3n+3 + 3n+1 + 2n+3 + 2n+2 ⋮ 6

   M = 3n+1.(32 + 1) + 2n+2.(2 + 1) 

    M = 3n.3.(9 + 1) + 2n+1.2 . 3

    M = 3n.30 + 2n+1.6

   M = 6.(3n.5 + 2n+1)

   Vì 6 ⋮ 6 nên M = 6.(3n.5+ 2n+1) ⋮ 6 (đpcm)

Phùng Anh Đức 6a5
Xem chi tiết
vũ ngọc bảo phúc
Xem chi tiết
zZz Cool Kid_new zZz
20 tháng 2 2019 lúc 19:16

Ta cần chứng minh:\(1^3+2^3+3^3+....+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

Với \(n=1\Rightarrow1=1\)(đúng)

Giả sử bài toán đúng với \(n=k\left(n\inℕ^∗\right)\) thì ta có:

 \(1+2^3+3^3+...+k^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)

Ta cần chứng minh đề bài đúng với \(n=k+1\) tức là:

\(1^3+2^3+3^3+....+n^3=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)

Đặt \(A_{k+1}=1^3+2^3+...+\left(k+1\right)^3\)

\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\) [theo (1)]

\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

\(\Rightarrow\left(2\right)\) đúng

\(\Rightarrow\left(1\right)\) đúng.

Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{n^2\cdot\left(n+1\right)^2}{4}\)

\(\Rightarrow1^3+2^3+...+n^3=\frac{n^2\cdot\left(n+1\right)^2}{4}\left(đpcm\right)\)

Nguyen Linh Nhi
Xem chi tiết
Trần Việt Anh
14 tháng 11 2018 lúc 19:59

1)A=987

LÊ HOÀNG ANH
Xem chi tiết
Không Tên
1 tháng 12 2018 lúc 20:31

\(N=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)

=>   \(3N=1+\frac{1}{3}+...+\frac{1}{3^{2017}}\)

=>  \(3N-N=\left(1+\frac{1}{3}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\right)\)

<=>   \(2N=1-\frac{1}{3^{2018}}< 1\)

<=>  \(N< \frac{1}{2}\)

=> dpcm

nguyễn Kim Chi
Xem chi tiết