Ai vẽ dùm e chân dung 2 bn thân nữ đứng kế bên dùm e ạ dưới ghi chữ idol dùm e
Câu 7,8,10 MN làm giúp e với ạ. Ghi rõ cách làm dùm e với ạ.
7.
ĐKXĐ: \(3\le x\le7\)
\(x-5+\sqrt{7-x}-\sqrt{x-3}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-3}=a\ge0\\\sqrt{7-x}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=2\left(x-5\right)\)
Pt trở thành:
\(\dfrac{a^2-b^2}{2}+b-a=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=\sqrt{7-x}\\\sqrt{x-3}+\sqrt{7-x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=7-x\\4+2\sqrt{\left(x-3\right)\left(7-x\right)}=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\\x=7\end{matrix}\right.\)
8.
ĐKXĐ: \(-2\le x\le2\)
Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\Rightarrow2\le t\le2\sqrt{2}\)
\(t^2=4+2\sqrt{4-x^2}\Rightarrow2\sqrt{-x^2+4}=t^2-4\)
Pt trở thành:
\(t+t^2-4+2m+3=0\)
\(\Leftrightarrow t^2+t+1=-2m\)
Xét hàm \(f\left(t\right)=t^2+t+1\) trên \(\left[2;2\sqrt{2}\right]\)
\(a=1>0;-\dfrac{b}{2a}=-\dfrac{1}{2}< 2\Rightarrow f\left(t\right)\) đồng biến trên đoạn đã cho
\(\Rightarrow f\left(2\right)\le f\left(t\right)\le f\left(2\sqrt{2}\right)\Rightarrow7\le f\left(t\right)\le9+2\sqrt{2}\)
\(\Rightarrow7\le-2m\le9+2\sqrt{2}\Rightarrow-\dfrac{9+2\sqrt{2}}{2}\le m\le-\dfrac{7}{2}\)
\(\Rightarrow m=\left\{-5;-4\right\}\)
Ghi tóm tắt và lời giải đầy đủ dùm e với ạ
a)Động năng tại \(v_0=0\)m/s:
\(W_{đ1}=\dfrac{1}{2}mv_0^2=0J\)
Động năng tại \(v=200\)cm/s=2m/s:
\(W_{đ2}=\dfrac{1}{2}mv^2=\dfrac{1}{2}\cdot1\cdot2^2=2J\)
b)Độ biến thiên động năng:
\(\Delta W=W_{đ2}-W_{đ1}=2-0=2J\)
c)Công lực kéo chính là độ biến thiên động năng:
\(A_k=\Delta W=2J\)
d)Lực kéo có độ lớn:
\(F_k=\dfrac{A_k}{s}=\dfrac{2}{2}=1N\)
Mn làm dùm 2 bài này với ạ.
Ghi rõ lời giải tóm tắt dùm e với ạ.
Câu 2.
Cơ năng vật ban đầu:
\(W=\dfrac{1}{2}mv^2+mgh=\dfrac{1}{2}\cdot m\cdot6^2+m\cdot10\cdot0=18m\left(J\right)\)
a)Cơ năng tại nơi có độ cao cực đại:
\(W_1=mgh_{max}\)
Bảo toàn cơ năng: \(W=W_1\)
\(\Rightarrow18m=mgh_{max}\Rightarrow h_{max}=\dfrac{18}{10}=1,8m\)
b)Cơ năng tại nơi \(W_t=W_đ\):
\(W_2=W_đ+W_t=2W_t=2mgz\)
Bảo toàn cơ năng: \(W=W_2\)
\(\Rightarrow18m=2mgz\Rightarrow z=\dfrac{18}{2g}=\dfrac{18}{2\cdot10}=0,9m\)
c)Cơ năng tại nơi \(W_đ=2W_t\):
\(W_3=W_đ+W_t=3W_t=3mgz'\)
Bảo toàn cơ năng: \(W=W_3\)
\(\Rightarrow18m=3mgz'\)
\(\Rightarrow z'=\dfrac{18}{3g}=\dfrac{18}{3\cdot10}=0,6m\)
Câu 12 làm sao v ạ. Ghi rõ cách làm dùm e với ạ.
Pt bậc 2 có 2 nghiệm trái dấu khi \(ac< 0\)
\(\Leftrightarrow\left(m^2-4\right)m< 0\)
\(\Leftrightarrow m\in\left(-\infty;-2\right)\cup\left(0;2\right)\)
GIẢI PT SAU:
\(\dfrac{2x^2-5x+2}{x-1}=\dfrac{2x^2+x+15}{x-3}\)
MN GIÚP E BÀI NÀY VỚI Ạ. GHI RÕ CÁCH LÀM DÙM E VỚI Ạ.
Không biết nãy bị lỗi ở đâu, mình gửi lại:<
cho hình bình hành ABCD. Trên đường chéo BD lấy 2 điểm E và F sao cho DE=BF
CMR:
a) AECF là hình bình hành
b) Gọi M và N lần lượt là giao điểm của AE,CF với DC và AB. CMR AC,BD,MN đồng quy
ai biết vẽ hình vẽ dùm e với ạ khỏi làm câu b cũng được giải dùm e câu a và hình ạ
(2x-1)(3x + 2 )(3-x)
ai tính dùm e đc k ạ :0
`(2x-1)(3x+2)(3-x)`
`= 2x(3x+2)-1(3x+2)*(3-x)`
`= (6x^2+4x-3x-2)*(3-x)`
`= (6x^2+x-2)(3-x)`
`= 6x^2(3-x)+x(3-x)-2(3-x)`
`= 18x^2-6x^3+3x-x^2-6+2x`
`= -6x^3+17x^2+6x-6`
(2x - 1)(3x + 2)(3 - x)
= 6x2 + 6x - 6x - 2 - 3x + x + 9x - 3x2 + 6 - 2x
= 3x2 + 5x + 4
Vẽ dùm e cái hình luôn với ạ đang cần gấp😅
a)
Δ\(ABD\) có \(AM\) là tia phân giác của \(\widehat{ADB}\) \(\left(M\in AB\right)\)
⇒ \(\dfrac{MA}{MB}=\dfrac{DA}{DB}\) (1)
b)
Δ\(ACD\) có \(AN\) là tia phân giác của \(\widehat{ADC}\) \(\left(N\in AC\right)\)
⇒ \(\dfrac{NA}{NC}=\dfrac{DA}{DC}\) (2)
Từ \(\left(1\right)và\left(2\right)\), mà \(BD=CD\left(gt\right)\)
⇒ \(\dfrac{MA}{MB}=\dfrac{NA}{NC}\)
⇒ \(MN\) // \(BC\) \(\left(ĐPCM\right)\)
c)
Δ\(ABC\) có \(MN\) // \(BC\) nên:
⇒ \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
⇒ \(AM.AC=AN.AB\)
Ta có: \(MN\) //\(BC\)
⇒ \(\left\{{}\begin{matrix}\widehat{M_1}=\widehat{D_1}\\\widehat{N_1}=\widehat{D_4}\end{matrix}\right.\)
\(Mà\) \(\left\{{}\begin{matrix}\widehat{D_1}=\widehat{D_2}\\\widehat{D_3}=\widehat{D_4}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}\widehat{M_1}=\widehat{D_2}\\\widehat{N_1}=\widehat{D_3}\end{matrix}\right.\)
Δ\(MKD\) có \(\widehat{M_1}=\widehat{D_2}\) ⇒ \(\text{Δ}MKD\) cân tại K
⇒ \(MK=KD\) \(\left(3\right)\)
Δ\(NKD\) có \(\widehat{N_1}=\widehat{D_3}\) ⇒ \(\text{Δ }NKD\) cân tại K
⇒ \(KN=KD\) \(\left(4\right)\)
Từ (3) và (4) ⇒ \(MK=KN\)
hay K là trung điểm của MN
Nhanh dùm e, e cảm ơn ạ:((