Giải phương trình: \(\frac{x}{\sqrt{x^2+1}}+\frac{1}{2x^2}=2\)
Giải phương trình \(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)
\(\Rightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{2x^3}{2}+\frac{x^2}{2}+\frac{2x}{2}+\frac{1}{2}\)
\(\Rightarrow\sqrt{x^2+x+\frac{1}{2}-\frac{1}{4}}=\sqrt{x^2+x+\frac{1}{4}}=x^3+\frac{x^2}{2}+x+\frac{1}{2}\)
\(\Rightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}=x+\frac{1}{2}=x^3+\frac{x^2}{2}+x+\frac{1}{2}\)
\(\Rightarrow x^3+\frac{x^2}{2}+x+\frac{1}{2}-x-\frac{1}{2}=x^3+\frac{x^2}{2}=0\Rightarrow\frac{2x^3+x^2}{2}=0\)
\(\Rightarrow2x^3+x^2=0\Rightarrow x^2\left(2x+1\right)=0\Rightarrow\hept{\begin{cases}x^2=0\Rightarrow x=0\\2x+1=0\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\end{cases}}\)
vậy x=0 và x=-1/2
giải hệ phương trình\(\hept{\begin{cases}x+y=-6\\\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}=2\end{cases}}\)
giải phương trình \(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
Giải Phương trình sau : \(\sqrt{x}-x\left(x-\frac{1}{2}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)
giải hệ phương trình sau :\(\hept{\begin{cases}\sqrt{4x-2y}-2\sqrt{x-2y}=-1\\\sqrt{x-2y}+7\left(2x-y\right)=37\end{cases}}\)
giải phương trình:
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\) (*) (ĐKXĐ: \(\forall x\in R\))
\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left[x^2\left(2x+1\right)+\left(2x+1\right)\right]\)
\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\left|x+\frac{1}{2}\right|}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
+) Xét \(x+\frac{1}{2}\ge0\Leftrightarrow x\ge-\frac{1}{2}\). Khi đó pt (*) trở thành:
\(\sqrt{x^2-\frac{1}{4}+x+\frac{1}{2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\) (Do \(x\ge\frac{1}{2}\))
\(\Leftrightarrow\frac{\left(2x+1\right)\left(x^2+1\right)-\left(2x+1\right)}{2}=0\)
\(\Leftrightarrow x^2\left(2x+1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\) (t/m ĐKXĐ)
+) Xét \(x+\frac{1}{2}< 0\Leftrightarrow x< -\frac{1}{2}\). Khi đó: \(2x+1< 0\)
Ta thấy: \(2x+1< 0;x^2+1>0;\frac{1}{2}>0\Rightarrow\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)< 0\)
Mà \(\sqrt{x^2-\frac{1}{4}+\left|x+\frac{1}{2}\right|}\ge0\) nên Vô lí ---> Loại TH này.
Vậy tập nghiệm của pt (*) là \(S=\left\{0;-\frac{1}{2}\right\}.\)
rthgsdgdh olweikehgf
giải phương trình \(\frac{7x+4}{\sqrt{2x^2-2}}+2\frac{\sqrt{2x+1}}{\sqrt{2x+2}}=3+3\frac{\sqrt{2x+1}}{\sqrt{x-1}}\)
\(\Leftrightarrow\frac{7x+4}{\sqrt{2\left(x-1\right)\left(x+1\right)}}+\frac{2\sqrt{2x+1}}{\sqrt{2\left(x+1\right)}}=3+\frac{3\sqrt{2x+1}}{\sqrt{x-1}}\)
\(\Leftrightarrow7x+4+2\sqrt{\left(2x+1\right)\left(x-1\right)}=3\sqrt{2\left(x-1\right)\left(x+1\right)}+3\sqrt{2\left(2x+1\right)\left(x+1\right)}\)
\(\Leftrightarrow\left(7x+4+\sqrt{8x^2-4x-4}\right)^2=\left(\sqrt{18x^2-18}+\sqrt{36^2+54x+18}\right)^2\)
\(\Leftrightarrow\left(7x+4\right)^2+8x^2-4x-4+2\left(7x+4\right)\sqrt{8x^2-4x-4}\)\(=18x^2-18+36x^2+54x+18+2\sqrt{\left(18x^2-18\right)\left(36x^2+54x+18\right)}\)
\(\Leftrightarrow3x^2-2x+12+4\left(7x+4\right)\sqrt{\left(x-1\right)\left(2x+1\right)}=36\left(x+1\right)\sqrt{\left(x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow3x^2-2x+12=4\left(2x+5\right)\sqrt{\left(x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow\left(3x^2-2x+12\right)^2=16\left(2x+5\right)^2\left(x-1\right)\left(2x+1\right)\)
\(\Leftrightarrow119x^4+588x^3+1940x^2-672x-544=0\left(1\right)\)
Ta thấy x>1 => Vế trái (1) \(>119.1^4+588.1^3+1940.1^2-672.1-544=1431>0\)
=> pt vô nghiệm.
Giải phương trình :\(\sqrt[3]{\frac{2x}{x+1}}+\sqrt[3]{\frac{1}{2}+\frac{1}{2x}}=2\)
Đặt \(\sqrt[3]{\frac{2x}{x+1}}=a\) thì
PT \(\Leftrightarrow a+\frac{1}{a}=0+2\)
\(\Leftrightarrow a^2-2a+1=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x}{x+1}}=1\)
\(\Leftrightarrow2x=x+1\)
\(\Leftrightarrow x=1\)
a) Giải phương trình: \(\frac{x^2}{2}+\frac{x}{2}+1=\sqrt{2x^3-x^2+x+1}\)
b) Giải hệ phương trình \(\hept{\begin{cases}2x+3+\sqrt{4-y}=4\\\sqrt{2y+3}+\sqrt{4-x}=4\end{cases}}\)
Giải các bất phương trình sau:
a) \(\sqrt{2-|x-2|}>x-2\)
b) \(x^2+3x+2\geq 2\sqrt{x^2+3x+5}\)
c) \(4\sqrt{x}+\frac{2}{\sqrt{x}}<2x+\frac{1}{2x}+2\)
Giải phương trình
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)
\(pt\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\left|x+\frac{1}{2}\right|}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)
Ta thấy vế phải bằng \(\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\), vế trái là căn thức nên để pt có nghiệm thì vế phải phải dương. Hay \(2x+1\ge0\)
Với \(x\ge\frac{-1}{2}\) ta có \(pt\Leftrightarrow\sqrt{x^2-\frac{1}{4}+x+\frac{1}{2}}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\Leftrightarrow x+\frac{1}{2}=\left(x^2+1\right)\left(x+\frac{1}{2}\right)\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(x^2+1-1\right)=0\Leftrightarrow x^2\left(x+\frac{1}{2}\right)=0\Leftrightarrow x=0\) hoặc \(x=\frac{-1}{2}\)
Vậy pt đã cho có 2 nghiệm là \(x=0;x=\frac{-1}{2}\)
Chúc em luôn học tập tốt :))
Giải phương trình \(\sqrt{\frac{x}{2x-1}}+\sqrt{\frac{2x-1}{x}}=2\)
Đăt \(t=\sqrt{\frac{x}{2x-1}}\) (1) , với \(t\ge0\) , ta được phương trình theo t như sau:
\(t+\frac{1}{t}=2\)
\(\Leftrightarrow t^2-2t+1=0\)
\(\Leftrightarrow\left(t-1\right)^2=0\)
\(\Leftrightarrow t=1\)
Thay vào (1) ta tìm được x = 1.
Chú ý đặt thêm các điều kiện để phương trình có nghĩa bạn nhé.
Điều Kiện: \(x\ne0;x\ne\frac{1}{2}\)
Nhận xét \(\frac{x}{2x-1}.\frac{2x-1}{x}=1\) Đặt \(\frac{x}{2x-1}=a\Rightarrow\frac{2x-1}{x}=\frac{1}{a}\)
\(\Rightarrow\sqrt{a}+\sqrt{\frac{1}{a}}=2\Rightarrow a+1=2\sqrt{a}\)
BP 2 vế PT \(\Rightarrow a^2+2a+1=4a\Leftrightarrow a^2-2a+1=0\)
\(\Leftrightarrow\left(a-1\right)^2=0\Rightarrow a=1\Rightarrow\frac{x}{2x-1}=1\)
\(\Leftrightarrow x=2x-1\Leftrightarrow x=1\)