Cho tam giác ABC .có M là 1 điểm tùy ý trong tam giác
Cm MB+MC<AB+AC
Cho tam giác ABC, M là điểm tùy ý trong tam giác ABC
Chứng minh: MC + MB < AB + AC
Cho tam giác ABC, M là trung điểm tùy ý nằm trong tam giác. Chứng minh MB+MC<AB+AC
Cho tam giác ABC và M là điểm tùy ý thuộc miền trong tam giác.
a) Chứng minh rằng MB + MC < AB + AC
b) Áp dụng kết quả câu a), chứng minh rằng \(\frac{AB+AC+BC}{2}< MA+MB+MC< AB+AC+BC\)
a, vì M nằm ở trong tam giác ABC nên MC và MB nằm ở trong tam giác ABC
=) MC va MB lần lượt chia góc C và B làm 2 nửa
=) ^B = ^B1+ ^B2 ^C= ^C1+^C2
theo quan hệ giứa góc và cạnh đối diên có
ab tương ứng vs góc C, ac tương ứng vs góc B
MB .........................C1, MC B2
CÓ : ^B+^C > ^B2+^C2
=) AB+AC > MB+MC ( THEO QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN)
CON B THÌ CHỊU NHÉ
a) Làm như bạn ly
b)Từ câu a) suy ra MB + MC < AB + AC;MA+MB < AC + BC
MA + MC < AB + BC
Cộng theo vế suy ra: \(2\left(MA+MB+MC\right)< 2\left(AB+BC+CA\right)\)
Suy ra \(MA+MB+MC< AB+BC+CA\) (1)
Mặt khác,áp dụng BĐT tam giácL
MB + MC > BC.Tương tự với hai BĐT còn lại và cộng theo vế: \(2\left(MA+MB+MC\right)>AB+BC+CA\)
Chia hai vế cho 2: \(MA+MB+MC>\frac{AB+BC+CA}{2}\)
Cho tam giác ABC và một điểm M tùy ý . Chứng minh rằng : \(\overrightarrow{4MA}+\overrightarrow{MB}-5\overrightarrow{MC}=4\overrightarrow{CA}+\overrightarrow{CB}\)
\(VT=4\overrightarrow{MA}-4\overrightarrow{MC}+\overrightarrow{MB}-\overrightarrow{MC}\)
\(=4\overrightarrow{CA}+\overrightarrow{CB}\)
Cho tam giác ABC nhọn nội tiếp (O;R),M là 1 điểm tùy ý. CMR MA+MB+MC+MD>=3R
MK ĐANG CẦN GẤP MONG Các bạn zải nhanh zúp
Cho tam giác ABC vuông cân ở A;M là điểm tùy ý nằm giữa B và C.Vẽ đường cao AH của tam giác ABC.
a) chứng minh AH=BC/2
b*)chứng minh MB^2+MC^2=2MA^2
Cho tam giác ABC cân tại A.Từ A kẻ AH vuông góc với BC tại H,trên đoạn thẳng AH lấy M tùy ý (M khác A và H)
Chứng minh rằng a) H là trung điểm của BC
b) MB=MC và MH là tia phân giác của góc BMC
c) MB<AB
A)TA CÓ TAM GIÁC ABC CÂN TẠI A NÊN AB=AC
DO AH VUÔNG GÓC VS BC NÊN HB=HC
SUY RA H LÀ TRUNG ĐIỂM CỦA BC
B)XÉT TAM GIÁC MBH VÀ TAM GIÁC MCH CÓ:
MB=MC(GT)
HB=HC(CMT)
MH LÀ CẠNH CHUNG NÊN HOẶC MH VUÔNG GÓC VS BC
TG MBH=TG MCH (C.C.C)-(CẠNH HUYỀN-CẠNH GÓC VUÔNG)
SUY RA GÓC BMH= GÓC CMH
TA CÓ : BMH+CMH=BMC SUY RA MH LÀ TIA PHÂN GIÁC CỦA GÓC BMC
C)CÒN PHẦN C MỊ CHỊU MỊ CX LƯỜI TÍNH
Các bn giúp mik với Cho tam giác ABC cân tại A.Từ A kẻ AH vuông góc với BC tại H,trên đoạn thẳng AH lấy điểm M tùy ý(M khác A và H).Chứng minh rằng: a)H là trung điểm BC. b)MB=MC và MH là tia phân giác của góc BMC. c)MB
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: Xet ΔMCB có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMCB cân tại M
=>MB=MC
mà MH là đường cao
nên MH là phân giác của góc BMC
Cho tam giác đều ABC và điểm M nằm tùy ý trong tam giác. Kẻ tia Mx//BC cắt AB ở D, tia My//AC cắt BC ở E, tia Mz//AB cắt AC ở F.
1, CM các tứ giác MDAF, MDBE và MECF là những hình thang cân.
2, So sánh: góc DMF, góc DME, góc EMF
3, CM: MA=DF, MB=DE, MC=EF.
4, Giả sử MA>MB và MA>MC. So sánh MA với tổng của MB+MC
a) Cmr:
vì h là hình thang cân nên:
\(\hept{\begin{cases}\widehat{A}=\widehat{B}\\\widehat{C}=\widehat{D}\end{cases}=60^o}\)
=> MDBE là đồng vị
My#AC
=> \(\overline{C}=\overline{MAB}\)(đồng vị)
m : C = 60 độ
=>MEB = 60o
mà B có 60 o
Nên cmr rằng các tứ giác MDAF, MDBE và MECF là những hình thang cân.
b) \(\widehat{MEB}vs\widehat{BEC}\)(bù nhau)
Nên: NEB + DME = 80 o => DME =320 o
Vậy DMF > DME < EMF
c,d chịu :(
Bạn kia là gì mà mình chả hiểu, hình như nhầm đề nhỉ?
1/ *Chứng minh tứ giác MDAF cân:
Do MD // BC nên ^ABC = ^MDA = 60o(1). Mặt khác ^BAC = 60o nên ^DAC = 60o (2)
Từ (1) và (2) suy ra ^MDA = ^DAC (*)
Mà MF // AB -> MF //AD (**)
Từ (*) và (**) suy ra đpcm.
Các hình còn lại tương tự.
2/ Còn lại chịu.