Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Khôi Bùi
14 tháng 3 2019 lúc 16:56

1 bài quen thuộc mik đã từng làm biggrin.gif

Ta có : \(P=xy\left(x+4\right)\left(y-2\right)+6x^2+5y^2+24x-10y+2043\)

\(=\left(x^2+4x\right)\left(y^2-2y\right)+6\left(x^2+4x\right)+5\left(y^2-2y+6\right)+2013\)

\(=\left(x^2+4x\right)\left(y^2-2y+6\right)+5\left(y^2-2y+6\right)+2013\)

\(=\left(x^2+4x+5\right)\left(y^2-2y+6\right)+2013\ge1.5+2013=2018\)

Dấu " = " xảy ra \(\Leftrightarrow x=-2;y=1\)

Trần Văn Thành
Xem chi tiết
marie
Xem chi tiết
luuthianhhuyen
18 tháng 11 2018 lúc 11:58

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

Phương Linh
Xem chi tiết
Tạ Duy Phương
20 tháng 10 2015 lúc 22:30

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

hh hh
Xem chi tiết
itsukashidou
16 tháng 1 2017 lúc 21:58

\(A=2x^2+9y^2-6xy-6x-12y+2036\)

   \(=x^2-10x+25+x^2-6xy+9y^2+4x-12y+4+2007\)

   \(=\left(x-5\right)^2+\left(x-3y\right)^2+4\left(x-3y\right)+4+2007\)

   \(=\left(x-5\right)^2+\left(x-3y+2\right)^2+2007\)

 \(\Rightarrow A\ge2007\)

Dấu "=" xảy ra khi \(x=5,y=\frac{7}{3}\)

Hồ Hoàng Anh Toàn
Xem chi tiết
Aeri Kha
15 tháng 7 2018 lúc 17:14

undefined

Hoàng Bảo Trân
Xem chi tiết
Pham Van Hung
3 tháng 9 2018 lúc 14:33

\(A=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2047\)

   \(=xy\left(x-2\right)\left(y+6\right)+12\left(x^2-2x\right)+3y\left(y+6\right)+2047\)

   \(=y\left(y+6\right)\left(x^2-2x\right)+12\left(x^2-2x+3\right)+3y\left(y+6\right)+2011\)

   \(=y\left(y+6\right)\left(x^2-2x+3\right)+12\left(x^2-2x+3\right)+2011\)

   \(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+2011\)

   \(=\left[\left(x-1\right)^2+2\right].\left[\left(y+3\right)^2+3\right]+2011\ge2.3+2011=2017\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)

Vậy GTNN của A là 2017 khi \(x=1,y=-3\)

Nguyễn Kiều Lam
Xem chi tiết
Đoàn Đức Hà
6 tháng 11 2021 lúc 18:17

a) \(A=6x-x^2-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)

Dấu \(=\)khi \(x-3=0\Leftrightarrow x=3\).

b) \(B=x^2-5x-2=x^2-2.\frac{5}{2}x+\left(\frac{5}{2}\right)^2-\frac{33}{4}=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge-\frac{33}{44}\)

Dấu \(=\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).

Khách vãng lai đã xóa
Nguyễn Lương Bích
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
21 tháng 8 2020 lúc 21:23

A = x2 + 5x + 7 

   = ( x2 + 5x + 25/4 ) + 3/4

   = ( x + 5/2 )2 + 3/4

\(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinA = 3/4 <=> x = -5/2

B = 6x - x2 - 5

   = -( x2 - 6x + 9 ) + 4

   = -( x - 3 )2 + 4

\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2+4\le4\)

Đẳng thức xảy ra <=> x - 3 = 0 => x = 3

=> MaxB = 4 <=> x = 3

C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

   = [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]

   = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

   = ( x2 + 5x )2 - 36

\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

Đẳng thức xảy ra <=> x2 + 5x = 0

                             <=> x( x + 5 ) = 0

                             <=> x = 0 hoặc x = -5

=> MinC = -36 <=> x = 0 hoặc x = -5

Khách vãng lai đã xóa
Nguyễn Lương Bích
22 tháng 8 2020 lúc 13:12

Thank bn.😊😉

Khách vãng lai đã xóa