Cho a\(\ne\)0 và \(\frac{2b}{a}\ge\frac{c}{a}\)
Chứng minh rằng: phương trình \(ax^2+bx+x=0\)có nghiệm.
Giúp mình với mọi người ơi! :(((
cho phương trình x4+ax3+bx2+cx+1=0(x là ẩn và \(a,b,c\in R\)), giả sử phương trình có nghiệm thực. Chứng minh rằng a2+b2+c2\(\ge\frac{4}{3}\)
Từ pt ta có: \(-\left(1+x^4\right)=\text{ax}^3+bx^2+cx\)
Áp dụng BĐT B.C.S:
\(\left(1+x^4\right)^2=\left(\text{ax}^3+bx^2+cx\right)^2\le\left(a^2+b^2+c^2\right)\left(x^6+x^4+x^2\right)\)\(\Rightarrow\left(a^2+b^2+c^2\right)\ge\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\left(1\right)\)
Mặt khác: \(\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\ge\frac{4}{3}\left(2\right)\)
Thật vậy: \(\left(2\right)\Leftrightarrow3\left(1+2x^4+x^8\right)\ge4\left(x^6+x^4+x^2\right)\)
\(\Leftrightarrow3x^8-4x^6+2x^4-4x^2+3\ge0\)
\(\Leftrightarrow\left(x^2-1\right)^2\left(3x^4+2x^2+3\right)\ge0\)(luôn đúng)
Từ 1 và 2 : \(a^2+b^2+c^2\ge\frac{4}{3}\)
Dấu '=' xảy ra khi và chỉ khi \(\orbr{\begin{cases}a=b=c=\frac{2}{3}\left(x=1\right)\\a=b=c=\frac{-2}{3}\left(x=-1\right)\end{cases}}\)
Cho đa thức f(x) = ax2 +bx + c = 0 với mọi x. Chứng minh rằng a = b= c = 0.
Giúp mình cách trình bày với !!!!!
a}Cmr pt \(ax^2+bx+c=0\) a khác 0 có nghiệm nếu \(\frac{2b}{a}\ge\frac{c}{a}+4\)
b)Chứng minh rằng nếu \(\overline{abc}\) là số nguyên tố thì phương trình ax^2 + bx + c = 0 không có
nghiệm hữu tỉ.
''Hãy trao cho anh'' câu trả lời thích đáng nhất
a}Cmr pt \(ax^2+bx+c=0\) a khác 0 có nghiệm nếu \(\frac{2b}{a}\ge\frac{c}{a}+4\)
b)Chứng minh rằng nếu \(\overline{abc}\) là số nguyên tố thì phương trình ax^2 + bx + c = 0 không có
nghiệm hữu tỉ.
''Hãy trao cho anh'' câu trả lời thích đáng nhất
Cho hai đa thức: f(x)=ax2+bx+c và g(x)=cx2+bx+a
Chứng minh rằng: Nếu f(x0)=0 thì g(\(\frac{1}{x_0}\))=0 (với x0≠0)
Chứng minh rằng nếu tích 1 nghiệm phương trình x^2 + ax +1=0 với 1 nghiệm nào đó của phương trình x^2 + bx +1=0 là nghiệm phương trình x^2 + abx +1 =0 thì \(\frac{4}{a^2b^2}-\frac{1}{a^2}-\frac{1}{b^2}=2\)
Cho tam thức bậc hai \(f\left(x\right)=ax^2+bx+c\ \left(a\ khác\ 0\right)\)
Chứng minh rằng nếu f(x) \(\ge\) 0 với mọi \(x\varepsilon R\) thì 4a + c \(\ge\) 2b
1.Cho đa thức f(x)=ax2 + bx + c với a, b, c là các hệ số nguyên. Chứng minh: f(x) + f(-x) ⋮ 2 với mọi số nguyên x .
2.Cho đa thức P(x)=ax+b (a, b ∈ Z;a ≠0). Chứng minh rằng:/P(2018) - P(1)/ ≥ 2017
3.Cho đa thức f(x) =2x2 + 3x +1.Chứng tỏ f(2n) - f(n) ⋮ 3.
4.Cho đa thức f(x) = 5x+1. Với 2 số a và b (a<b).
5.Cho đa thức f(x) = ax + b với a≠0, a ϵ Z. Chứng tỏ rằng /f (2017) - f(1)/ ≥ 2016.
giúp mình với!!!
Câu 1 :Giả sử phương trình bậc hai \(ax^2+bx+c=0\) có hai nghiệm thuộc [0;3]. Tìm GTLN và GTNN của biểu thức:
Q=\(\frac{18a^2-9ab+b^2}{9a^2-3ab+ac}\)
Câu 2 Giả sử phương trình bậc hai \(ax^2+bx+c=0\) có hai nghiệm > 1 Chứng minh rằng
\(\frac{^{x^2-a-2b}}{b-a+1}\text{≥}\frac{2\sqrt{b}}{1+\sqrt{b}}\)
GIÚP MÌNH VỚI
Câu 2: Theo định lý Vi-et ta có \(\hept{\begin{cases}x_1+x_2=-a\\x_1x_2=b\end{cases}}\)Bất Đẳng Thức cần chứng minh có dạng
\(\frac{x_1}{1+x_1}+\frac{x_2}{1+x_2}\ge\frac{2\sqrt{x_1x_2}}{1+\sqrt{x_1x_2}}\)Hay \(\frac{x_1}{1+x_2}+1+\frac{x_2}{1+x_1}+1\ge\frac{2\sqrt{x_1x_2}}{1+\sqrt{x_1x_2}}+2\)
\(\left(x_1+x_2+1\right)\left(\frac{1}{1+x_1}+\frac{1}{1+x_2}\right)\ge\frac{2\left(1+2\sqrt{x_1x_2}\right)}{1+\sqrt{x_1x_2}}\)Theo Bất Đẳng Thức Cosi ta có
\(x_1+x_2+1\ge2\sqrt{x_1x_2}+1\)Để chứng minh (*) ta quy về chứng minh
\(\frac{1}{1+x_1}+\frac{1}{1+x_2}\ge\frac{2}{1+\sqrt{x_1x_2}}\)với \(x_1;x_2>1\). Quy đồng rồi rút gọn Bất Đẳng Thức trên tương đương với
\(\left(\sqrt{x_1x_2}-1\right)\left(\sqrt{x_1}-\sqrt{x_2}\right)^2\ge0\)(Điều này hiển nhiên đúng)
Dấu "=" xảy ra khi và chỉ khi \(x_1=x_2\Leftrightarrow a^2=4b\)
Bạn ơi thế a^2 - 4b ở vế trái bạn vứt đi đâu r ????