A= \(\frac{5^2}{1.6^{ }}\) + \(\frac{5^2}{6.11}\) + ... + \(\frac{5^2}{26.31}\)
Chứng tỏ A > 1
A=\(\frac{5^2}{1.6}\)+\(\frac{5^2}{6.11}\)+...........+\(\frac{5^2}{26.31}\)
chứng tỏ A>1
#)Giải :
Ta có :
\(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}=5\left(\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)=5\left(1-\frac{1}{31}\right)=5\times\frac{30}{31}=\frac{150}{31}>1\)
\(\Rightarrow A>1\)
A=\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+....+\frac{5^2}{26.31}\) chứng tỏ A>1 giúp em mk với cảm ơn
\(A=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
\(A=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(A=5.\left(1-\frac{1}{31}\right)\)
\(A=5.\frac{30}{31}\)
\(A=\frac{150}{31}>1\)
Đề hơi lạ nhỉ, vì quá rõ ràng rùi 52/1.6 = 25/6 > 1 nên A lớn hơn 1
\(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)
\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)\)
\(=5.\frac{30}{31}=\frac{150}{31}>1\)
=> A > 1
Study well ! >_<
tính hợp lí
a) 1+6+11+16+.......+46+51
b) \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
a) áp dụng dãy số cách đều đi
a, 1+6+11+16+...+46+51
Số số hạng là : (51-1):5+1 = 11 ( số )
Tổng là : (51+1).11:2=286
b, Đặt A = \(\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+\dfrac{5^2}{16.21}+\dfrac{5^2}{21.26}+\dfrac{5^2}{26.31 } \)
\(\dfrac{1}{5}A=\) \(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+\dfrac{5}{26.31}\)
\(\dfrac{1}{5}A=\) \(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{31}\)
\(\dfrac{1}{5}A=1-\dfrac{1}{31}\)
\(\dfrac{1}{5}A=\dfrac{30}{31}\)
\(A=\dfrac{30}{31}:\dfrac{1}{5}=\dfrac{150}{31}\)
Vậy..
cho A=5*2/1.6+5*2/6.11+...+5*2/26.31
chứng tỏ A>1
tính nhanh
Q=\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+.......+\frac{5^2}{26.31}\)
Q=5(5/1x6+5/6x11+5/11x16+....+5/26x31)
Q=5(1/1-1/6+1/6-1/11+1/11-1/16+....+1/26-1/31)
Q=5(1/1-1/31)
Q=5x30/31
Q=150/31
\(Q=\frac{25}{1.6}+\frac{25}{6.11}+\frac{25}{11.16}+......+\frac{25}{26.31}.\)
\(Q=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+.....+\frac{1}{26}-\frac{1}{31}\right)\)
\(Q=5\left(1-\frac{1}{31}\right)\)
CÒN ĐÔU PN TỰ LÀM NHA
\(Q=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(Q=5\left(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{26.31}\right)\)
\(Q=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(Q=5\left(1-\frac{1}{31}\right)\)
\(Q=5.\frac{31}{32}\)
\(Q=\frac{155}{32}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
Ta có:
\(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(A=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
\(A=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(A=5\left(\frac{1}{1}-\frac{1}{31}\right)\)
\(A=5.\frac{30}{31}\)
\(A=\frac{150}{31}\)
Vậy \(A=\frac{150}{31}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\) =?
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)=\frac{5.30}{31}=\frac{150}{31}\)
Tinh
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
A=\(\frac{5^2}{1.6}\)+\(\frac{5^2}{6.11}\)+....+\(\frac{5^2}{26.31}\)=\(\frac{25}{1.6}\)+\(\frac{25}{6.11}\)+.....+\(\frac{25}{26.31}\)
\(\frac{1}{5}\)A=\(\frac{5}{1.6}\)+\(\frac{5}{6.11}\)+....+\(\frac{5}{26.31}\)=1-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{11}\)+....+\(\frac{1}{26}\)-\(\frac{1}{31}\)=1-\(\frac{1}{31}\)=\(\frac{30}{31}\)
A=\(\frac{30}{31}\):\(\frac{1}{5}\)
A=\(\frac{150}{31}\)
Tính B , biết :
\(B=\frac{5^2}{1.6}+\frac{5^2}{6.11}+.....+\frac{5^2}{26.31}\)
\(B=\frac{5^2}{1.6}+\frac{5^2}{6.11}+.....+\frac{5^2}{26.31}\)
\(B=\frac{5.5}{1.6}+\frac{5.5}{6.11}+.....+\frac{5.5}{26.31}\)
\(B=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+.......+\frac{5}{26.31}\right)\)
\(B=5.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+......+\frac{1}{26}-\frac{1}{31}\right)\)
\(B=5.\left(\frac{1}{1}-\frac{1}{31}\right)\)
\(B=\frac{5.30}{31}\)
\(B=\frac{150}{31}\)